Adaptive neuro fuzzy inference system to predict average asphaltene particle diameter case study: in thermal de-asphalting process

被引:1
作者
Sadi, Maryam [1 ]
Kananpanah, Somayeh [1 ]
Bayat, Mahmoud [1 ]
机构
[1] RIPI, Fac Res & Dev Downstream Petr Ind, POB 14665-137, Tehran, Iran
关键词
ANFIS; asphaltene content; asphaltene particles diameter; neuro fuzzy; thermal de-asphalting process; SIZE DISTRIBUTION; CRUDE-OIL;
D O I
10.1080/10916466.2020.1769653
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In thermal de-asphalting procedure, where asphaltene particles are aggregated through heating crude oil at an elevated temperature, predicting the asphaltene particles' diameter is of major importance. In this study, thermal de-asphalting process is modeled using adaptive neuro fuzzy inference system by considering isolating temperature, crude oil API and asphaltene content as inputs to predict asphaltene particles' average diameter. The experimental data measured in a custom built thermal de-asphalting set-up, are applied to construct neuro fuzzy model structure. The average relative error of proposed model, for all data points is 3.06%, indicating an excellent agreement between model predictions and experimental values.
引用
收藏
页码:542 / 549
页数:8
相关论文
共 18 条
  • [1] [Anonymous], THESIS
  • [2] [Anonymous], THESIS
  • [3] [Anonymous], 2006, International Journal of Computer Science
  • [4] Asphaltene removal from crude oil by means of ceramic membranes
    Ashtari, M.
    Ashrafizadeh, S. N.
    Bayat, M.
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2012, 82-83 : 44 - 49
  • [5] Investigation on Asphaltene and Heavy Metal Removal from Crude Oil Using a Thermal Effect
    Ashtari, M.
    Bayat, M.
    Sattarin, M.
    [J]. ENERGY & FUELS, 2011, 25 (01) : 300 - 306
  • [6] Prediction of asphaltene self-precipitation in dead crude oil
    Bayat, M.
    Sattarin, M.
    Teymouri, A.
    [J]. ENERGY & FUELS, 2008, 22 (01) : 583 - 586
  • [7] Comparison of asphaltene structure and morphology under different deasphaltene methods
    Kananpanah, S.
    Kheirkhah, R.
    Bayat, M.
    Sadi, M.
    Moosavian, M. Ali
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2017, 35 (05) : 457 - 464
  • [8] Impacts of physico-chemical properties of asphaltene aggregates on optimization of the thermal de-asphaltene process
    Kananpanah, S.
    Bayat, M.
    Mousavian, M. A.
    Nazar, A. R. Solaimany
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2016, 147 : 718 - 725
  • [9] The evolution of heavy crude oil's asphaltene particle size distribution by elevating temperature
    Kananpanah, Somayeh
    Bayat, Mahmoud
    Mousavian, Mohammad Ali
    [J]. INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2017, 14 (03) : 232 - 246
  • [10] Adaptive neuro-fuzzy inference system: An instant and architecture-free predictor for improved QSAR studies
    Loukas, YL
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2001, 44 (17) : 2772 - 2783