Attractors for reaction-diffusion equations in unbounded domains

被引:318
作者
Wang, BX [1 ]
机构
[1] Tsinghua Univ, Dept Appl Math, Beijing 100084, Peoples R China
关键词
global attractor; asymptotic compactness; reaction-diffusion equation;
D O I
10.1016/S0167-2789(98)00304-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic behaviour of solutions for parabolic non-linear evolution equations in R-n. We prove the asymptotic compactness of the solutions and then establish the existence of the global attractor in L-2(R-n). (C)1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 18 条
[1]   EXISTENCE AND FINITE DIMENSIONALITY OF THE GLOBAL ATTRACTOR FOR EVOLUTION-EQUATIONS ON UNBOUNDED-DOMAINS [J].
ABERGEL, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :85-108
[2]  
ABERGEL F, 1989, RAIRO-MATH MODEL NUM, V23, P359
[3]  
Babin A., 1995, Journal of Dynamics and Differential Equations, V7, P567, DOI 10.1007/BF02218725
[4]   ATTRACTORS OF PARTIAL-DIFFERENTIAL EVOLUTION-EQUATIONS IN AN UNBOUNDED DOMAIN [J].
BABIN, AV ;
VISHIK, MI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :221-243
[5]  
BABIN AV, 1991, ATTRACTORS EVOLUTION
[6]   Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations [J].
Ball, JM .
JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (05) :475-502
[7]  
BALL JM, UNPUB PROOF EXISTENC
[8]  
DANERS D, 1997, IN PRESS P R SOC EDI
[9]  
FEIREISL E, 1994, CR ACAD SCI I-MATH, V319, P147
[10]   Global attractors for degenerate parabolic equations on unbounded domains [J].
Feireisl, E ;
Laurencot, P ;
Simondon, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 129 (02) :239-261