Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method

被引:54
|
作者
Wang, Fei [1 ,2 ,3 ]
Chen, Peng [1 ]
Zhen, Zhao [1 ]
Yin, Rui [4 ]
Cao, Chunmei [5 ]
Zhang, Yagang [5 ]
Duic, Neven [6 ]
机构
[1] North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China
[2] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
[3] North China Elect Power Univ, Hebei Key Lab Distributed Energy Storage & Microg, Baoding 071003, Peoples R China
[4] State Grid Hebei Elect Power Co, Dispatch & Control Ctr, Shijiazhuang 050022, Hebei, Peoples R China
[5] North China Elect Power Univ, Dept Math & Phys, Baoding 071003, Peoples R China
[6] Univ Zagreb, Fac Mech Engn & Naval Architecture, Dept Energy Power & Environm Engn, Ivana Lucica 5, HR-10000 Zagreb, Croatia
基金
中国国家自然科学基金;
关键词
Ultra-short-term; Wind farm cluster power forecasting; Dynamic spatio-temporal correlation; Hierarchical directed graph structure; Causal relationship; CLIMATE-CHANGE MITIGATION; NEURAL-NETWORK; RENEWABLE ENERGY; DEMAND RESPONSE; OPTIMIZATION; PREDICTION; ALGORITHM; MODEL; LOAD; FLOW;
D O I
10.1016/j.apenergy.2022.119579
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate wind farm cluster power forecasting is of great significance for the safe operation of the power system with high wind power penetration. However, most of the current neural network methods used for wind farm cluster power forecasting have the following three problems: (1) lack of consideration of dynamic spatiotemporal correlation among adjacent wind farms; (2) simultaneously forecasting all wind farms' power to obtain the total power will produce numerous error sources; (3) ignoring the causal relationship among input variables. Therefore, to solve the above problems, this paper proposes an ultra-short-term wind farm cluster power forecasting method based on dynamic spatio-temporal correlation and hierarchical directed graph structure. Firstly, three different types of nodes (wind speed nodes, wind power nodes, and target node) and input samples are defined, and then the spatio-temporal correlation matrices that can describe the correlation of adjacent wind farms are also calculated. Secondly, directed edges are defined to connect different nodes in order to obtain the hierarchical directed graph structure. Finally, this graph structure with dynamic spatio-temporal correlation information is used to train the forecasting model. In case study, compared with other benchmark methods, the proposed method shows excellent performance in improving accuracy of power forecasting.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Ultra-Short-Term Wind Power Subsection Forecasting Method Based on Extreme Weather
    Yu, Guang Zheng
    Lu, Liu
    Tang, Bo
    Wang, Si Yuan
    Chung, C. Y.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5045 - 5056
  • [22] Ultra-short-term Probabilistic Forecasting of Wind Power Based on Temporal Mixture Density Network
    Dong X.
    Sun Y.
    Pu T.
    Wang X.
    Li Y.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (14): : 93 - 100
  • [23] A Spatiotemporal Directed Graph Convolution Network for Ultra-Short-Term Wind Power Prediction
    Li, Zhuo
    Ye, Lin
    Zhao, Yongning
    Pei, Ming
    Lu, Peng
    Li, Yilin
    Dai, Binhua
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2023, 14 (01) : 39 - 54
  • [24] Ultra-Short-Term Wind Power Forecasting Based on the Strategy of "Dynamic Matching and Online Modeling"
    Li, Yuhao
    Wang, Han
    Yan, Jie
    Ge, Chang
    Han, Shuang
    Liu, Yongqian
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2025, 16 (01) : 107 - 123
  • [25] An Ultra-short-Term Wind Speed Prediction Method Based on Spatio-Temporal Feature Decomposition and Multi Feature Fusion Network
    Li, Xuewei
    He, Guanrong
    Yu, Jian
    Liu, Zhiqiang
    Yu, Mei
    Ding, Weiping
    Xiong, Wei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 469 - 481
  • [26] Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method
    Fan, Huijing
    Zhen, Zhao
    Liu, Nian
    Sun, Yiqian
    Chang, Xiqiang
    Li, Yu
    Wang, Fei
    Mi, Zengqiang
    ENERGY, 2023, 266
  • [27] An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model
    Lv, Yunlong
    Hu, Qin
    Xu, Hang
    Lin, Huiyao
    Wu, Yufan
    Energy, 2024, 293
  • [28] Research on Wind Power Ultra-short-term Forecasting Method Based on PCA-LSTM
    Wu, Siying
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508
  • [29] A dual spatio-temporal network for short-term wind power forecasting
    Lai, Zefeng
    Ling, Qiang
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
  • [30] An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model
    Lv, Yunlong
    Hu, Qin
    Xu, Hang
    Lin, Huiyao
    Wu, Yufan
    ENERGY, 2024, 293