Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis

被引:32
|
作者
Shinde, Harshraj [1 ]
Dudhate, Ambika [1 ]
Tsugama, Daisuke [2 ]
Gupta, Shashi K. [3 ]
Liu, Shenkui [4 ]
Takano, Tetsuo [1 ]
机构
[1] Univ Tokyo, ANESC, Nishitokyo, Tokyo 1880002, Japan
[2] Hokkaido Univ, Res Fac Agr, Lab Crop Physiol, Sapporo, Hokkaido, Japan
[3] Int Crops Res Inst Semi Arid Trop, Hyderabad, Telangana, India
[4] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Hangzhou, Zhejiang, Peoples R China
关键词
Pearl millet; PgNAC21; Salinity stress; ABA; Transactivation assay; Stress responsive genes; DROUGHT TOLERANCE; FUNCTIONAL-ANALYSIS; PENNISETUM-GLAUCUM; GENE-EXPRESSION; ABSCISIC-ACID; GRAIN-YIELD; SALT; RESISTANCE; RICE; OVEREXPRESSION;
D O I
10.1016/j.plaphy.2018.11.004
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Pearl millet (Pennisetum glaucum) is the sixth-leading cereal crop and a staple food crop. It is known for its high tolerance to abiotic stress and good nutrient profile. NAC (NAM, ATAF1/2 and CUC) transcription factors (TFs) play an important role in abiotic stress tolerance. In our study, the pearl millet stress-responsive NAC TF gene PgNAC21 was characterized. Gene expression analysis revealed that PgNAC21 expression is induced by salinity stress and abscisic acid (ABA) treatment. In silica promoter analysis showed the presence of ABA response elements (ABREs) and MYB TF binding sites. A yeast one-hybrid assay indicated that a putative MYB TF in pearl millet PgMYB1, binds to the promoter of PgNAC21. A transactivation assay in yeast cells revealed that PgNAC21 functions as a transcription activator and that its activation domain is located in its C-terminus. Relative to control plants, Arabidopsis plants overexpressing PgNAC21 exhibited better seed germination, heavier fresh weight and greater root length under salinity stress. Overexpression of PgNAC21 in Arabidopsis plants also enhanced the expression of stress-responsive genes such as GSTF6 (GLUTATHIONE S-TRANSFERASE 6), COR47 (COLD-REGULATED 47) and RD20 (RESPONSIVE TO DEHYDRATION 20). Our data demonstrate that PgNAC21 functions as a stress-responsive NAC TF and can be utilized in transgenic approaches for developing salinity stress tolerance in crop plants.
引用
收藏
页码:546 / 553
页数:8
相关论文
共 50 条
  • [1] A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis
    Yu, Xingwang
    Liu, Yanmin
    Wang, Shuang
    Tao, Yuan
    Wang, Zhankui
    Mijiti, Abudoukeyumu
    Wang, Ze
    Zhang, Hua
    Ma, Hao
    PLANT GROWTH REGULATION, 2016, 79 (02) : 187 - 197
  • [2] The durum wheat NAC transcription factor TtNAC2A enhances drought stress tolerance in Arabidopsis
    Mergby, Dhawya
    Hanin, Moez
    Saidi, Mohammed Najib
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 186
  • [3] Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses
    Pang, Xinyue
    Xue, Min
    Ren, Meiyan
    Nan, Dina
    Wu, Yaqi
    Guo, Huiqin
    GENETICS AND MOLECULAR BIOLOGY, 2019, 42 (03) : 624 - 634
  • [4] VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis
    Ju, Yan-lun
    Yue, Xiao-feng
    Min, Zhuo
    Wang, Xian-hang
    Fang, Yu-lin
    Zhang, Jun-xiang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 146 : 98 - 111
  • [5] Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana
    Qin, Yuxiang
    Tian, Yanchen
    Han, Lu
    Yang, Xinchao
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 441 (02) : 476 - 481
  • [6] Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco
    Wang, Yiping
    Cui, Ying
    Liu, Bin
    Wang, Ying
    Sun, Shaoying
    Wang, Jingwen
    Tan, Mengmeng
    Yan, Hao
    Zhang, Yanni
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [7] A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis
    Lu, Min
    Ying, Sheng
    Zhang, Deng-Feng
    Shi, Yun-Su
    Song, Yan-Chun
    Wang, Tian-Yu
    Li, Yu
    PLANT CELL REPORTS, 2012, 31 (09) : 1701 - 1711
  • [8] STIFDB2: An Updated Version of Plant Stress-Responsive TranscrIption Factor DataBase with Additional Stress Signals, Stress-Responsive Transcription Factor Binding Sites and Stress-Responsive Genes in Arabidopsis and Rice
    Naika, Mahantesha
    Shameer, Khader
    Mathew, Oommen K.
    Gowda, Ramanjini
    Sowdhamini, Ramanathan
    PLANT AND CELL PHYSIOLOGY, 2013, 54 (02) : E8 - +
  • [9] A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses
    Saad, Abu Sefyan I.
    Li, Xu
    Li, He-Ping
    Huang, Tao
    Gao, Chun-Sheng
    Guo, Mao-Wei
    Cheng, Wei
    Zhao, Guang-Yao
    Liao, Yu-Cai
    PLANT SCIENCE, 2013, 203 : 33 - 40
  • [10] Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum)
    Dudhate, Ambika
    Shinde, Harshraj
    Yu, Pei
    Tsugama, Daisuke
    Gupta, Shashi Kumar
    Liu, Shenkui
    Takano, Tetsuo
    BMC GENOMICS, 2021, 22 (01)