Influence of chitin nanofibrils ultrasonic treatment on structure and properties of chitosan-based composite materials

被引:6
作者
Kodolova-Chukhontseva, V. V. [1 ]
Dresvyanina, E. N. [1 ,2 ]
Maevskaia, E. N. [1 ]
Dobrovolskaya, I. P. [1 ,3 ]
Koroleva, M. R. [4 ]
Vlasova, E. N. [3 ]
Ivan'kova, E. M. [3 ]
Elokhovskii, V. Yu [3 ]
Yudin, V. E. [1 ,3 ]
Morganti, P. [5 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Polytekhnicheskaya Str 29, St Petersburg 195251, Russia
[2] St Petersburg State Univ Ind Technol & Design, B Morskaya Str 18, St Petersburg 191186, Russia
[3] Russian Acad Sci, Inst Macromol Cpds, VO, Bolshoy Pr 31, St Petersburg 199004, Russia
[4] Udmurt Fed Res Ctr UB RAS, Tatiana Baramzina Str 34, Izhevsk 426067, Russia
[5] Univ Campania Luigi Vanvitelli, Via L De Crecchio 7, I-80138 Naples, Italy
基金
俄罗斯科学基金会;
关键词
Chitosan; Chitin nanofibrils; Ultrasonic dispersion; Cavitation; Composite fibers and films; Mechanical properties; FILMS;
D O I
10.1016/j.carbpol.2022.119194
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The influence of ultrasonic treatment parameters of chitin nanofibrils aqueous suspension on structure, strength and deformation properties of chitosan-based composite films and fibers was investigated. Model calculations of ultrasound-induced cavitation parameters in the aqueous suspension of the chitin nanofibrils showed that an increase in the field power up to 630 W led to destruction of the cavity, to an increase in the temperature in the vicinity of cavitation area (up to 507 degrees C) and, as a consequence, to destruction of chitin glycoside ring (which is confirmed by the IR data). The results of light scattering, IR spectroscopy, and electron microscopy investigations indicated that the optimal duration of ultrasonic treatment of the chitin nanofibrils aqueous solution was 4-10 min (depending on oriented state of the scaffold). Tensile strength of the composites was 130 +/- 11 MPa (films), 226 +/- 4.8 MPa (fibers); deformation at break was 43 +/- 7.5% (films), 10 +/- 0.6% (fibers).
引用
收藏
页数:9
相关论文
共 29 条
[1]   Laser light scattering in turbid media part I: Experimental and simulated results for the spatial intensity distribution [J].
Berrocal, Edouard ;
Sedarsky, David L. ;
Paciaroni, Megan E. ;
Meglinski, Igor V. ;
Linne, Mark A. .
OPTICS EXPRESS, 2007, 15 (17) :10649-10665
[2]   Chitin Nanofibrils in Poly(Lactic Acid) (PLA) Nanocomposites: Dispersion and Thermo-Mechanical Properties [J].
Coltelli, Maria-Beatrice ;
Cinelli, Patrizia ;
Gigante, Vito ;
Aliotta, Laura ;
Morganti, Pierfrancesco ;
Panariello, Luca ;
Lazzeri, Andrea .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03)
[3]   Supramolecular structure of chitin nanofibrils [J].
Dobrovol'skaya, I. P. ;
Kasatkin, I. A. ;
Yudin, V. E. ;
Ivan'kova, E. M. ;
Elokhovskii, V. Yu. .
POLYMER SCIENCE SERIES A, 2015, 57 (01) :52-57
[4]  
Dobrovolskaya I. P, 2018, POLYM SCAFFOLDS TISS
[5]  
Dobrovolskaya I. P, 1975, POLYM SCI SER A+, V17, P1555
[6]  
Dobrovolskaya I. P, 1978, POLYM SCI SER A+, P2847
[7]   Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers [J].
Dobrovolskaya, Irina P. ;
Yudin, Vladimir E. ;
Popryadukhin, Pavel V. ;
Ivan'kova, Elena M. ;
Shabunin, Anton S. ;
Kasatkin, Igor A. ;
Morgantie, Pierfrancesco .
CARBOHYDRATE POLYMERS, 2018, 194 :260-266
[8]  
Dresvyanina E., 2018, FibRes. Text., V25, P27
[9]   Influence of surface morphology of chitosan films modified by chitin nanofibrils on their biological properties [J].
Dresvyanina, E. N. ;
Kodolova-Chukhontseva, V. V. ;
Bystrov, S. G. ;
Dobrovolskaya, I. P. ;
Vaganov, G. V. ;
Smirnova, N., V ;
Kolbe, K. A. ;
Kamalov, A. M. ;
Ivan'kova, E. M. ;
Morganti, P. ;
Yudin, V. E. .
CARBOHYDRATE POLYMERS, 2021, 262
[10]   Thermodynamics of interaction between water and the composite films based on chitosan and chitin nanofibrils [J].
Dresvyanina, E. N. ;
Grebennikov, S. F. ;
Elokhovskii, V. Yu ;
Dobrovolskaya, I. P. ;
Ivan'kova, E. M. ;
Yudin, V. E. ;
Heppe, Katja ;
Morganti, Pierfrancesco .
CARBOHYDRATE POLYMERS, 2020, 245