LiBH4 Electronic Destabilization with Nickel(II) Phthalocyanine-Leading to a Reversible Hydrogen Storage System

被引:14
作者
Lai, Qiwen [1 ]
Quadir, Md Zakaria [2 ]
Aguey-Zinsou, Kondo-Francois [1 ]
机构
[1] Univ New South Wales, Sch Chem Engn, MERLin, Sydney, NSW 2052, Australia
[2] Curtin Univ, Microscopy & Microanal Facil, John de Laeter Ctr, Perth, WA 6102, Australia
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 12期
关键词
hydrogen storage; borohydride; nanosizing; nickel; electronic destabilization; SORPTION PROPERTIES; TRANSITION-METAL; CARBON; DECOMPOSITION; BOROHYDRIDES; STABILITY; RELEASE; DEHYDROGENATION; NANOCONFINEMENT; SPECTROSCOPY;
D O I
10.1021/acsaem.8b01087
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Precipitation of a LiBH4 solution into an antisolvent led to formation of nanoparticles in the size range of 2 to 18 nm. By direct deposition of these nanoparticles onto a nickel(II) phthalocyanine substrate, LiBH4 was destabilized and the hydrogen release temperature was dramatically reduced to 350 degrees C through a single step decomposition. Remarkably, upon hydrogen release and uptakes, the morphology of the material evolved to single crystal "plates"-like particles and a reversible hydrogen storage capacity of 3.2 mass% at 350 degrees C under 6 MPa H-2 pressure was observed. As evident by X-ray photoelectron spectroscopy analysis, such an enhancement is believed to result from the effective electron transfer interplay between LiBH4, LiH, B, and the nickel(II) phthalocyanine, enabling a destabilization of LiBH4 and the facile rehydrogenation of LiH and B into LiBH4. This study thus reveals a novel approach to destabilize LiBF4 by the use of an "electron active" substrate.
引用
收藏
页码:6824 / 6832
页数:17
相关论文
共 70 条
[1]   PHTHALOCYANINE POLYMERS .2. SYNTHESIS AND CHARACTERIZATION OF SOME METAL PHTHALOCYANINE SHEET OLIGOMERS [J].
ACHAR, BN ;
FOHLEN, GM ;
PARKER, JA .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1982, 20 (07) :1785-1790
[2]   Modified lithium borohydrides for reversible hydrogen storage [J].
An, M ;
Jurgensen, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (13) :7062-7067
[3]   Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides [J].
Au, Ming ;
Jurgensen, Arthur R. ;
Spencer, William A. ;
Anton, Donald L. ;
Pinkerton, Frederick E. ;
Hwang, Son-Jong ;
Kim, Chul ;
Bowman, Robert C., Jr. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (47) :18661-18671
[4]  
Banfi L., 2001, Encyclopedia of Reagents for Organic Synthesis
[5]   Carbon Nanomaterials as Catalysts for Hydrogen Uptake and Release in NaAlH4 [J].
Berseth, Polly A. ;
Harter, Andrew G. ;
Zidan, Ragaiy ;
Blomqvist, Andreas ;
Araujo, C. Moyses ;
Scheicher, Ralph H. ;
Ahuja, Rajeev ;
Jena, Puru .
NANO LETTERS, 2009, 9 (04) :1501-1505
[6]   Hydrogen sorption properties of MgH2-LiBH4 composites [J].
Boesenberg, Ulrike ;
Doppiu, Stefania ;
Mosegaard, Lene ;
Barkhordarian, Gagik ;
Eigen, Nico ;
Borgschulte, Andreas ;
Jensen, Torbert R. ;
Cerenius, Yngve ;
Gutfleisch, Oliver ;
Klassen, Thomas ;
Dornheim, Martin ;
Bormann, Ruediger .
ACTA MATERIALIA, 2007, 55 (11) :3951-3958
[7]   Core-Shell Strategy Leading to High Reversible Hydrogen Storage Capacity for NaBH4 [J].
Christian, Meganne L. ;
Aguey-Zinsou, Kondo-Francois .
ACS NANO, 2012, 6 (09) :7739-7751
[8]   Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J].
Cushing, BL ;
Kolesnichenko, VL ;
O'Connor, CJ .
CHEMICAL REVIEWS, 2004, 104 (09) :3893-3946
[9]   FT-IR spectra of inorganic borohydrides [J].
D'Anna, Vincenza ;
Spyratou, Alexandra ;
Sharma, Manish ;
Hagemann, Hans .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2014, 128 :902-906
[10]   Melt Infiltration: an Emerging Technique for the Preparation of Novel Functional Nanostructured Materials [J].
de Jongh, Petra E. ;
Eggenhuisen, Tamara M. .
ADVANCED MATERIALS, 2013, 25 (46) :6672-6690