Comparing Randomization Strategies for Search-Control Parameters in Monte-Carlo Tree Search

被引:6
作者
Sironi, Chiara F. [1 ]
Winands, Mark H. M. [1 ]
机构
[1] Maastricht Univ, Dept Data Sci & Knowledge Engn, Game AI & Search Grp, Maastricht, Netherlands
来源
2019 IEEE CONFERENCE ON GAMES (COG) | 2019年
关键词
Monte-Carlo tree search; search-control parameter; randomization; General Game Playing;
D O I
10.1109/cig.2019.8848056
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte-Carlo Tree Search (MCTS) has been applied successfully in many domains. Previous research has shown that adding randomization to certain components of MCTS might increase the diversification of the search and improve the performance. In a domain that tackles many games with different characteristics, like General Game Playing (GGP), trying to diversify the search might be a good strategy. This paper investigates the effect of randomizing search-control parameters for MCTS in GGP. Four different randomization strategies are compared and results show that randomizing parameter values before each simulation has a positive effect on the search in some of the tested games. Moreover, parameter randomization is compared with on-line parameter tuning.
引用
收藏
页数:8
相关论文
共 16 条
  • [1] Finite-time analysis of the multiarmed bandit problem
    Auer, P
    Cesa-Bianchi, N
    Fischer, P
    [J]. MACHINE LEARNING, 2002, 47 (2-3) : 235 - 256
  • [2] RANDOM EVALUATIONS IN CHESS
    BEAL, D
    SMITH, MC
    [J]. ICCA JOURNAL, 1994, 17 (01): : 3 - 9
  • [3] CADIAPLAYER: A Simulation-Based General Game Player
    Bjornsson, Yngvi
    Finnsson, Hilmar
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2009, 1 (01) : 4 - 15
  • [4] Algorithms for computing strategies in two-player simultaneous move games
    Bosansky, Branislav
    Lisy, Viliam
    Lanctot, Marc
    Cermak, Jiri
    Winands, Mark H. M.
    [J]. ARTIFICIAL INTELLIGENCE, 2016, 237 : 1 - 40
  • [5] Cazenave T, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P754
  • [6] Dynamic randomization and domain knowledge in Monte-Carlo Tree Search for Go knowledge-based systems
    Chen, Keh-Hsun
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 34 : 21 - 25
  • [7] Coulom R, 2007, LECT NOTES COMPUT SC, V4630, P72
  • [8] Gelly S., 2007, P 24 INT C MACH LEAR, P273, DOI [10.1145/1273496.1273531, DOI 10.1145/1273496.1273531]
  • [9] Genesereth M., 2014, SYNTHESIS LECT ARTIF, V8, P1, DOI DOI 10.2200/S00564ED1V01Y201311AIM024
  • [10] Bandit based Monte-Carlo planning
    Kocsis, Levente
    Szepesvari, Csaba
    [J]. MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 282 - 293