Objective Bayesian transformation and variable selection using default Bayes factors

被引:3
作者
Charitidou, E. [1 ]
Fouskakis, D. [1 ]
Ntzoufras, I. [2 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Athens Univ Econ & Business, Dept Stat, 76 Patis St, Athens 10434, Greece
关键词
Bayesian model selection; Fractional Bayes factor; Intrinsic Bayes factor; Posterior model probabilities; Transformation family selection; Variable selection; MODEL SELECTION; POWER-TRANSFORMATIONS; PRIOR DISTRIBUTIONS; LINEAR-MODEL; REGRESSION; FAMILY; NORMALITY;
D O I
10.1007/s11222-017-9749-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, the problem of transformation and simultaneous variable selection is thoroughly treated via objective Bayesian approaches by the use of default Bayes factor variants. Four uniparametric families of transformations (Box-Cox, Modulus, Yeo-Johnson and Dual), denoted by T, are evaluated and compared. The subjective prior elicitation for the transformation parameter , for each T, is not a straightforward task. Additionally, little prior information for is expected to be available, and therefore, an objective method is required. The intrinsic Bayes factors and the fractional Bayes factors allow us to incorporate default improper priors for . We study the behaviour of each approach using a simulated reference example as well as two real-life examples.
引用
收藏
页码:579 / 594
页数:16
相关论文
共 50 条
  • [11] Objective Bayesian Edge Screening and Structure Selection for Ising Networks
    Marsman, M.
    Huth, K.
    Waldorp, L. J.
    Ntzoufras, I.
    PSYCHOMETRIKA, 2022, 87 (01) : 47 - 82
  • [12] Objective Bayesian group variable selection for linear model
    Kang, Sang Gil
    Lee, Woo Dong
    Kim, Yongku
    COMPUTATIONAL STATISTICS, 2022, 37 (03) : 1287 - 1310
  • [13] On efficient calculations for Bayesian variable selection
    Ruggieri, Eric
    Lawrence, Charles E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1319 - 1332
  • [14] A variational Bayes approach to variable selection
    Ormerod, John T.
    You, Chong
    Mueller, Samuel
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3549 - 3594
  • [15] Objective Bayes model selection in probit models
    Leon-Novelo, Luis
    Moreno, Elias
    Casella, George
    STATISTICS IN MEDICINE, 2012, 31 (04) : 353 - 365
  • [16] Comparison of Bayesian objective procedures for variable selection in linear regression
    Moreno, Elias
    Giron, F. Javier
    TEST, 2008, 17 (03) : 472 - 490
  • [17] Comparison of Bayesian objective procedures for variable selection in linear regression
    Elías Moreno
    F. Javier Girón
    TEST, 2008, 17 : 472 - 490
  • [18] Default Bayes factors for ANOVA designs
    Rouder, Jeffrey N.
    Morey, Richard D.
    Speckman, Paul L.
    Province, Jordan M.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (05) : 356 - 374
  • [19] Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection
    Consonni, Guido
    La Rocca, Luca
    Peluso, Stefano
    SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (03) : 741 - 764
  • [20] Variable Selection for Naive Bayes Semisupervised Learning
    Choi, Byoung-Jeong
    Kim, Kwang-Rae
    Cho, Kyu-Dong
    Park, Changyi
    Koo, Ja-Yong
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (10) : 2702 - 2713