Objective Bayesian transformation and variable selection using default Bayes factors

被引:3
作者
Charitidou, E. [1 ]
Fouskakis, D. [1 ]
Ntzoufras, I. [2 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Athens Univ Econ & Business, Dept Stat, 76 Patis St, Athens 10434, Greece
关键词
Bayesian model selection; Fractional Bayes factor; Intrinsic Bayes factor; Posterior model probabilities; Transformation family selection; Variable selection; MODEL SELECTION; POWER-TRANSFORMATIONS; PRIOR DISTRIBUTIONS; LINEAR-MODEL; REGRESSION; FAMILY; NORMALITY;
D O I
10.1007/s11222-017-9749-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, the problem of transformation and simultaneous variable selection is thoroughly treated via objective Bayesian approaches by the use of default Bayes factor variants. Four uniparametric families of transformations (Box-Cox, Modulus, Yeo-Johnson and Dual), denoted by T, are evaluated and compared. The subjective prior elicitation for the transformation parameter , for each T, is not a straightforward task. Additionally, little prior information for is expected to be available, and therefore, an objective method is required. The intrinsic Bayes factors and the fractional Bayes factors allow us to incorporate default improper priors for . We study the behaviour of each approach using a simulated reference example as well as two real-life examples.
引用
收藏
页码:579 / 594
页数:16
相关论文
共 50 条
[11]   Objective Bayesian variable selection in linear regression model [J].
Kang, Sang Gil ;
Kim, Dal Ho ;
Lee, Woo Dong ;
Kim, Yongku .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (06) :1133-1157
[12]   Objective Bayesian Edge Screening and Structure Selection for Ising Networks [J].
Marsman, M. ;
Huth, K. ;
Waldorp, L. J. ;
Ntzoufras, I. .
PSYCHOMETRIKA, 2022, 87 (01) :47-82
[13]   On efficient calculations for Bayesian variable selection [J].
Ruggieri, Eric ;
Lawrence, Charles E. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) :1319-1332
[14]   A variational Bayes approach to variable selection [J].
Ormerod, John T. ;
You, Chong ;
Mueller, Samuel .
ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02) :3549-3594
[15]   Comparison of Bayesian objective procedures for variable selection in linear regression [J].
Elías Moreno ;
F. Javier Girón .
TEST, 2008, 17 :472-490
[16]   Comparison of Bayesian objective procedures for variable selection in linear regression [J].
Moreno, Elias ;
Giron, F. Javier .
TEST, 2008, 17 (03) :472-490
[17]   Objective Bayes model selection in probit models [J].
Leon-Novelo, Luis ;
Moreno, Elias ;
Casella, George .
STATISTICS IN MEDICINE, 2012, 31 (04) :353-365
[18]   Default Bayes factors for ANOVA designs [J].
Rouder, Jeffrey N. ;
Morey, Richard D. ;
Speckman, Paul L. ;
Province, Jordan M. .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (05) :356-374
[19]   Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection [J].
Consonni, Guido ;
La Rocca, Luca ;
Peluso, Stefano .
SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (03) :741-764
[20]   BAYESIAN CONSTRAINED VARIABLE SELECTION [J].
Farcomeni, Alessio .
STATISTICA SINICA, 2010, 20 (03) :1043-1062