Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events

被引:122
作者
Pierce, J. R. [1 ]
Riipinen, I. [2 ,3 ,4 ]
Kulmala, M. [2 ]
Ehn, M. [2 ]
Petaja, T. [2 ]
Junninen, H. [2 ]
Worsnop, D. R. [2 ,5 ]
Donahue, N. M. [3 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada
[2] Univ Helsinki, Div Atmospher Sci, Dept Phys, Helsinki, Finland
[3] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA
[4] Inst Chem Engn & High Temp ICE HT Proc, Patras, Greece
[5] Aerodyne Res Inc, Billerica, MA 01821 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会; 芬兰科学院; 欧洲研究理事会;
关键词
AEROSOL FORMATION; ATMOSPHERIC NANOPARTICLES; SIZE DISTRIBUTION; SURFACE-TENSION; TIME SCALES; CONDENSATION; GROWTH; FOREST; MODEL; NUMBER;
D O I
10.5194/acp-11-9019-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Condensation of secondary organic compounds onto ultrafine aerosols is important for growing these particles to sizes where they can act as cloud condensation nuclei. The organic flux to ultrafine particles depends strongly on the volatility of the condensing compounds. This paper presents quantitative estimates of the volatility of secondary organic aerosol (SOA) in freshly nucleated particles. We examine 13 nucleation/growth events in two remote continental locations, Hyytiala, Finland and Egbert, ON, Canada. Two independent methods are used to quantify the volatility of the growing nucleation mode: (1) modelling of the growing nucleation mode to determine which volatilities allow the model to reproduce observed growth, and (2) modelling of the evaporation of heated aerosols in a Volatility Differential Mobility Particle Sizer to determine which volatilities allow the model to reproduce the observed evaporation. We find that the average saturation vapor concentration (C*) in the freshly nucleated particles (once D-p > 3 nm) is likely less than 10(-3) - 10(-2) mu g m(-3) (this corresponds to 3 x 10(6) - 3 x 10(7) molecules cm(-3) and a saturation vapor pressure of 10(-8) - 10(-7) Pa). This maximum volatility depends somewhat on other uncertain factors that affect the size-dependent condensation of secondary organic compounds such as the surface tension, mass accommodation coefficient and the volatility of the pre-existing aerosols. However, our tests suggest that under no reasonable assumptions can the SOA in the ultrafine particles contain a majority of compounds with C* > 10(-2) mu g m(-3). We demonstrate that the growth could be driven by either gas-phase or particle-phase chemistry but cannot conclude which is responsible for the low-volatility SOA.
引用
收藏
页码:9019 / 9036
页数:18
相关论文
共 59 条
[1]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[2]   Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer [J].
Allan, JD ;
Alfarra, MR ;
Bower, KN ;
Coe, H ;
Jayne, JT ;
Worsnop, DR ;
Aalto, PP ;
Kulmala, M ;
Hyötyläinen, T ;
Cavalli, F ;
Laaksonen, A .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :315-327
[3]   Surface tension of organic acids plus water binary mixtures from 20 degrees C to 50 degrees C [J].
Alvarez, E ;
Vazquez, G ;
SanchezVilas, M ;
Sanjurjo, B ;
Navaza, JM .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1997, 42 (05) :957-960
[4]  
[Anonymous], 2006, ATMOS CHEM PHYS
[5]   Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior [J].
Cappa, C. D. ;
Wilson, K. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (05) :1895-1911
[6]   Quantitative estimates of the volatility of ambient organic aerosol [J].
Cappa, C. D. ;
Jimenez, J. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (12) :5409-5424
[7]   The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation [J].
Chang, R. Y-W. ;
Slowik, J. G. ;
Shantz, N. C. ;
Vlasenko, A. ;
Liggio, J. ;
Sjostedt, S. J. ;
Leaitch, W. R. ;
Abbatt, J. P. D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (11) :5047-5064
[8]  
Dal Maso M, 2005, BOREAL ENVIRON RES, V10, P323
[9]   Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles [J].
Donahue, N. M. ;
Trump, E. R. ;
Pierce, J. R. ;
Riipinen, I. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[10]   Atmospheric organic particulate matter: From smoke to secondary organic aerosol [J].
Donahue, Neil M. ;
Robinson, Allen L. ;
Pandis, Spyros N. .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (01) :94-106