Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces

被引:50
|
作者
Chang, Y. -K. [1 ]
Chalishajar, D. N. [2 ]
机构
[1] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Gujarat Univ, Dept Appl Math, Sardar Vallabhbhai Patel Inst Technol, Anand 388306, Gujarat, India
关键词
controllability; mixed Volterra-Fredholm-type integro-differential inclusions; Bohnenblust-Karlin's fixed point theorem;
D O I
10.1016/j.jfranklin.2008.02.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper establishes a sufficient condition for the controllability of semilinear mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces. We use Bohnenblust-Karlin's fixed point theorem combined with a strongly continuous operator semigroup. Our main condition (A5) only depends upon the local properties of multivalued map on a bounded set. An example is also given to illustrate our main results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:499 / 507
页数:9
相关论文
共 50 条
  • [41] ON CONTROLLABILITY FOR FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Wang, JinRong
    Li, XueZhu
    Wei, Wei
    OPUSCULA MATHEMATICA, 2012, 32 (02) : 341 - 356
  • [42] On a nonlinear integro-differential equation of Fredholm type
    Bounaya, Mohammed Charif
    Lemita, Samir
    Ghiat, Mourad
    Aissaoui, Mohamed Zine
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 13 (02) : 194 - 205
  • [43] Mild Solution of Second-Order Impulsive Integro-Differential Evolution Equations of Volterra Type in Banach Spaces
    Hao, Xinan
    Liu, Lishan
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [44] Controllability of evolution differential inclusions in Banach spaces
    Chang, Yong-Kui
    Li, Wan-Tong
    Nieto, Juan J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (02) : 623 - 632
  • [45] The controllability problem for certain nonlinear integro-differential Volterra systems
    Korobov, VI
    Pavlichkov, SS
    Schmidt, WH
    OPTIMIZATION, 2001, 50 (3-4) : 155 - 186
  • [46] Global robust controllability of the triangular integro-differential Volterra systems
    Korobov, VI
    Pavlichkov, SS
    Schmidt, WH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (02) : 743 - 760
  • [47] Application of artificial neural networks for existence and controllability in impulsive fractional Volterra-Fredholm integro-differential equations
    Raghavendran, Prabakaran
    Gunasekar, Tharmalingam
    Gochhait, Saikat
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2024, 32 (01):
  • [48] Extremal solutions of nonlinear first order impulsive integro-differential equations of mixed type in Banach spaces
    Liu, LS
    Yu, LX
    DIFFERENTIAL EQUATIONS AND APPLICATIONS, VOL 2, 2002, : 127 - 147
  • [49] New investigation on controllability of sobolev-type Volterra-Fredholm functional integro-differential equation with non-local condition
    Thilakraj, E.
    Kaliraj, K.
    Ravichandran, C.
    Manjula, M.
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 15
  • [50] Monotone method for a system of nonlinear mixed type implicit impulsive integro-differential equations in Banach spaces
    Lan, Heng-you
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) : 531 - 543