Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces

被引:50
|
作者
Chang, Y. -K. [1 ]
Chalishajar, D. N. [2 ]
机构
[1] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Gujarat Univ, Dept Appl Math, Sardar Vallabhbhai Patel Inst Technol, Anand 388306, Gujarat, India
关键词
controllability; mixed Volterra-Fredholm-type integro-differential inclusions; Bohnenblust-Karlin's fixed point theorem;
D O I
10.1016/j.jfranklin.2008.02.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper establishes a sufficient condition for the controllability of semilinear mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces. We use Bohnenblust-Karlin's fixed point theorem combined with a strongly continuous operator semigroup. Our main condition (A5) only depends upon the local properties of multivalued map on a bounded set. An example is also given to illustrate our main results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:499 / 507
页数:9
相关论文
共 50 条
  • [21] Initial value problems for a nonlinear integro-differential equation of mixed type in Banach spaces
    Zheng, Xiong-Jun
    Wang, Jin-Ming
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (05) : 835 - 847
  • [22] Approximate Controllability Results for Fractional Semilinear Integro-Differential Inclusions in Hilbert Spaces
    Mahmudov, N. I.
    Murugesu, R.
    Ravichandran, C.
    Vijayakumar, V.
    RESULTS IN MATHEMATICS, 2017, 71 (1-2) : 45 - 61
  • [23] Approximate Controllability Results for Fractional Semilinear Integro-Differential Inclusions in Hilbert Spaces
    N. I. Mahmudov
    R. Murugesu
    C. Ravichandran
    V. Vijayakumar
    Results in Mathematics, 2017, 71 : 45 - 61
  • [24] Approximate controllability results for analytic resolvent integro-differential inclusions in Hilbert spaces
    Vijayakumar, V.
    INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (01) : 204 - 214
  • [25] Theoretical and Numerical Studies of Fractional Volterra-Fredholm Integro-Differential Equations in Banach Space
    Alsa'di, K.
    Long, N. M. A. Nik
    Eshkuvatov, Z. K.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (03): : 469 - 489
  • [26] Initial value problems for first order impulsive integro-differential equations of Volterra type in Banach spaces
    Zhu, Jiang
    Yu, Yajuan
    Postolica, Vasile
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2007, 5 (01): : 9 - 26
  • [27] On fractional integro-differential inclusions with state-dependent delay in Banach spaces
    Benchohra, Mouffak
    Litimein, Sara
    N'Guerekata, Gaston
    APPLICABLE ANALYSIS, 2013, 92 (02) : 335 - 350
  • [28] Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order 1 < r < 2
    Kavitha Williams, W.
    Vijayakumar, V.
    Udhayakumar, R.
    Panda, Sumati Kumari
    Nisar, Kottakkaran Sooppy
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (01)
  • [29] INTEGRO-DIFFERENTIAL EQUATIONS OF VOLTERRA TYPE
    RAO, MR
    TSOKOS, CP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 528 - &
  • [30] Controllability of Functional Integro-Differential Inclusions with an Unbounded Delay
    Y. K. Chang
    W. T. Li
    Journal of Optimization Theory and Applications, 2007, 132 : 125 - 142