Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces

被引:54
作者
Chang, Y. -K. [1 ]
Chalishajar, D. N. [2 ]
机构
[1] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Gujarat Univ, Dept Appl Math, Sardar Vallabhbhai Patel Inst Technol, Anand 388306, Gujarat, India
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2008年 / 345卷 / 05期
关键词
controllability; mixed Volterra-Fredholm-type integro-differential inclusions; Bohnenblust-Karlin's fixed point theorem;
D O I
10.1016/j.jfranklin.2008.02.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper establishes a sufficient condition for the controllability of semilinear mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces. We use Bohnenblust-Karlin's fixed point theorem combined with a strongly continuous operator semigroup. Our main condition (A5) only depends upon the local properties of multivalued map on a bounded set. An example is also given to illustrate our main results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:499 / 507
页数:9
相关论文
共 16 条
[1]   Controllability of nonlinear systems in Banach spaces: A survey [J].
Balachandran, K ;
Dauer, JP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 115 (01) :7-28
[2]   Controllability of integrodifferential systems in Banach spaces [J].
Balachandran, K ;
Sakthivel, R .
APPLIED MATHEMATICS AND COMPUTATION, 2001, 118 (01) :63-71
[3]   Controllability results for impulsive functional differential inclusions [J].
Benchohra, M ;
Górniewicz, L ;
Ntouyas, SK ;
Ouahab, A .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :211-228
[4]   Controllability results for semilinear evolution inclusions with nonlocal conditions [J].
Benchohra, M ;
Gatsori, EP ;
Ntouyas, SK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) :493-513
[5]   Controllability for functional differential and integrodifferential inclusions in Banach spaces [J].
Benchohra, M ;
Ntouyas, SK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 113 (03) :449-472
[6]  
Bohnenblust H. F., 1950, CONTRIBUTIONS THEORY, VI, P155
[7]   Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space [J].
Chalishajar, D. N. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (01) :12-21
[8]  
CHALISHAJAR DN, 2007, P INT C APPL AN DIFF, P55
[9]   Controllability of impulsive functional differential systems with infinite delay in Banach spaces [J].
Chang, Yong-Kui .
CHAOS SOLITONS & FRACTALS, 2007, 33 (05) :1601-1609
[10]   Controllability of evolution differential inclusions in Banach spaces [J].
Chang, Yong-Kui ;
Li, Wan-Tong ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (02) :623-632