Derivation, Validation and Application of a Pragmatic Risk Prediction Index for Benchmarking of Surgical Outcomes

被引:7
作者
Spence, Richard T. [1 ,2 ]
Chang, David C. [1 ,3 ]
Kaafarani, Haytham M. A. [1 ,3 ]
Panieri, Eugenio [2 ]
Anderson, Geoffrey A. [3 ]
Hutter, Matthew M. [1 ,3 ]
机构
[1] Massachusetts Gen Hosp, Codman Ctr Clin Effectiveness Surg, Dept Gen Surg, Boston, MA 02114 USA
[2] Univ Cape Town, Dept Surg, Cape Town, South Africa
[3] Harvard Med Sch, Boston, MA USA
关键词
SURGERY; MORTALITY; IMPROVEMENT; MORBIDITY; HOSPITALS; VARIABLES; QUALITY; SAFETY; TOOL;
D O I
10.1007/s00268-017-4177-2
中图分类号
R61 [外科手术学];
学科分类号
摘要
Despite the existence of multiple validated risk assessment and quality benchmarking tools in surgery, their utility outside of high-income countries is limited. We sought to derive, validate and apply a scoring system that is both (1) feasible, and (2) reliably predicts mortality in a middle-income country (MIC) context. A 5-step methodology was used: (1) development of a de novo surgical outcomes database modeled around the American College of Surgeons' National Surgical Quality Improvement Program (ACS-NSQIP) in South Africa (SA dataset), (2) use of the resultant data to identify all predictors of in-hospital death with more than 90% capture indicating feasibility of collection, (3) use these predictors to derive and validate an integer-based score that reliably predicts in-hospital death in the 2012 ACS-NSQIP, (4) apply the score in the original SA dataset and demonstrate its performance, (5) identify threshold cutoffs of the score to prompt action and drive quality improvement. Following step one-three above, the 13 point Codman's score was derived and validated on 211,737 and 109,079 patients, respectively, and includes: age 65 (1), partially or completely dependent functional status (1), preoperative transfusions ae<yen>4 units (1), emergency operation (2), sepsis or septic shock (2) American Society of Anesthesia score ae<yen>3 (3) and operative procedure (1-3). Application of the score to 373 patients in the SA dataset showed good discrimination and calibration to predict an in-hospital death. A Codman Score of 8 is an optimal cutoff point for defining expected and unexpected deaths. We have designed a novel risk prediction score specific for a MIC context. The Codman Score can prove useful for both (1) preoperative decision-making and (2) benchmarking the quality of surgical care in MIC's.
引用
收藏
页码:533 / 540
页数:8
相关论文
共 50 条
  • [21] The Addition of the Charlson Comorbidity Index to the GRACE Risk Prediction Index Improves Prediction of Outcomes in Acute Coronary Syndrome
    Erickson, Steven R.
    Cole, Emily
    Kline-Rogers, Eva
    Eagle, Kim A.
    POPULATION HEALTH MANAGEMENT, 2014, 17 (01) : 54 - 59
  • [22] Recalibration and External Validation of the Risk Analysis Index A Surgical Frailty Assessment Tool
    Arya, Shipra
    Varley, Patrick
    Youk, Ada
    Borrebach, Jeffrey D.
    Perez, Sebastian
    Massarweh, Nader N.
    Johanning, Jason M.
    Hall, Daniel E.
    ANNALS OF SURGERY, 2020, 272 (06) : 996 - 1005
  • [23] Development and validation of risk prediction model for adverse outcomes in trauma patients
    Zhuang, Qian
    Liu, Jianchao
    Liu, Wei
    Ye, Xiaofei
    Chai, Xuan
    Sun, Songmei
    Feng, Cong
    Li, Lin
    ANNALS OF MEDICINE, 2024, 56 (01)
  • [24] Derivation and Validation of a Risk Index to Predict All-Cause Mortality in Type 2 Diabetes Mellitus
    Wu, Christine Xia
    Tan, Woan Shin
    Toh, Matthias Paul Han Sim
    Heng, Bee Hoon
    JOURNAL OF ENDOCRINOLOGY AND METABOLISM, 2012, 2 (02) : 88 - 95
  • [25] Derivation and internal validation of a mortality risk index for aged people living with HIV: The Dat'AIDS score
    Hentzien, Maxime
    Delpierre, Cyrille
    Pugliese, Pascal
    Allavena, Clotilde
    Jacomet, Christine
    Valantin, Marc-Antoine
    Cabie, Andre
    Cuzin, Lise
    Rey, David
    Bani-Sadr, Firouze
    Drame, Moustapha
    PLOS ONE, 2018, 13 (04):
  • [26] Derivation and validation of a simple multidimensional index incorporating exercise capacity parameters for survival prediction in idiopathic pulmonary fibrosis
    Chandel, Abhimanyu
    Pastre, Jean
    Valery, Solene
    King, Christopher S.
    Nathan, Steven D.
    THORAX, 2023, 78 (04) : 368 - 375
  • [27] Development and Validation of a Risk Quantification Index for 30-Day Postoperative Mortality and Morbidity in Noncardiac Surgical Patients
    Dalton, Jarrod E.
    Kurz, Andrea
    Turan, Alparslan
    Mascha, Edward J.
    Sessler, Daniel I.
    Saager, Leif
    ANESTHESIOLOGY, 2011, 114 (06) : 1336 - 1344
  • [28] Development and validation of an ankle brachial index risk model for the prediction of cardiovascular events
    Fowkes, F. G. R.
    Murray, G. D.
    Butcher, I.
    Folsom, A. R.
    Hirsch, A. T.
    Couper, D. J.
    DeBacker, G.
    Kornitzer, M.
    Newman, A. B.
    Sutton-Tyrrell, K. C.
    Cushman, M.
    Lee, A. J.
    Price, J. F.
    D'Agostino, R. B., Sr.
    Murabito, J. M.
    Norman, P. E.
    Masaki, K. H.
    Bouter, L. M.
    Heine, R. J.
    Stehouwer, C. D. A.
    McDermott, M. M.
    Stoffers, H. E. J. H.
    Knottnerus, J. A.
    Ogren, M.
    Hedblad, B.
    Koenig, W.
    Meisinger, C.
    Cauley, J. A.
    Franco, O. H.
    Hunink, M. G. M.
    Hofman, A.
    Witteman, J. C.
    Criqui, M. H.
    Langer, R. D.
    Hiatt, W. R.
    Hamman, R. F.
    EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2014, 21 (03) : 310 - 320
  • [29] The Marsden Morbidity Index: the derivation and validation of a simple risk index scoring system using cardiopulmonary exercise testing variables to predict morbidity in high-risk patients having major cancer surgery
    Nawoor-Quinn, Z.
    Oliver, A.
    Raobaikady, R.
    Mohammad, K.
    Cone, S.
    Kasivisvanathan, R.
    PERIOPERATIVE MEDICINE, 2022, 11 (01)
  • [30] Explainable artificial intelligence model for mortality risk prediction in the intensive care unit: a derivation and validation study
    Hu, Chang
    Gao, Chao
    Li, Tianlong
    Liu, Chang
    Peng, Zhiyong
    POSTGRADUATE MEDICAL JOURNAL, 2024, 100 (1182) : 219 - 227