SOBOLEV TYPE FRACTIONAL DYNAMIC EQUATIONS AND OPTIMAL MULTI-INTEGRAL CONTROLS WITH FRACTIONAL NONLOCAL CONDITIONS

被引:69
作者
Debbouche, Amar [1 ]
Torres, Delfim F. M. [2 ]
机构
[1] Guelma Univ, Dept Math, Guelma 24000, Algeria
[2] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3810193 Aveiro, Portugal
关键词
Sobolev type equations; fractional evolution equations; optimal control; nonlocal conditions; mild solutions; INTEGRODIFFERENTIAL EQUATIONS; DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; CONTROLLABILITY; EXISTENCE; UNIQUENESS; ENERGY;
D O I
10.1515/fca-2015-0007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and uniqueness of mild solutions to Sobolev type fractional nonlocal dynamic equations in Banach spaces. The Sobolev nonlocal condition is considered in terms of a Riemann-Liouville fractional derivative. A Lagrange optimal control problem is considered, and existence of a multi-integral solution obtained. Main tools include fractional calculus, semigroup theory, fractional power of operators, a singular version of Gronwall's inequality, and Leray-Schauder fixed point theorem. An example illustrating the theory is given.
引用
收藏
页码:95 / 121
页数:27
相关论文
共 43 条
[1]  
Ahmad B, 2010, TOPOL METHOD NONL AN, V35, P295
[2]  
Baleanu D., 2012, SERIES COMPLEXITY NO, DOI 10.1142/10044
[3]   Existence and uniqueness results for a fractional evolution equation in Hilbert space [J].
Bazhlekova, Emilia .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (02) :232-243
[4]   Controllability results for semilinear evolution inclusions with nonlocal conditions [J].
Benchohra, M ;
Gatsori, EP ;
Ntouyas, SK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) :493-513
[5]   Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces [J].
Debbouche, Amar ;
Torres, Delfim F. M. .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (09) :1577-1585
[6]   Nonlocal nonlinear integrodifferential equations of fractional orders [J].
Debbouche, Amar ;
Baleanu, Dumitru ;
Agarwal, Ravi P. .
BOUNDARY VALUE PROBLEMS, 2012,
[7]   Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems [J].
Debbouche, Amar ;
Baleanu, Dumitru .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1442-1450
[8]   Controllability of Fractional Functional Evolution Equations of Sobolev Type via Characteristic Solution Operators [J].
Feckan, Michal ;
Wang, JinRong ;
Zhou, Yong .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) :79-95
[9]  
Franklin G.F., 2010, Feedback Control of Dynamic Systems
[10]  
Harrat A., 2013, NONLINEAR STUD, V20, P549