Evidence for aggregation and export of cyanobacteria and nano-eukaryotes from the Sargasso Sea euphotic zone

被引:111
作者
Lomas, M. W. [1 ]
Moran, S. B. [2 ]
机构
[1] Bermuda Inst Ocean Sci, St Georges GE01, Bermuda
[2] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA
基金
美国国家科学基金会;
关键词
ATLANTIC TIME-SERIES; ORGANIC-CARBON; BIOGENIC CARBON; WATER-COLUMN; FOOD-WEB; PHYTOPLANKTON; FLUX; BIOMASS; OCEAN; SYNECHOCOCCUS;
D O I
10.5194/bg-8-203-2011
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Pico-plankton and nano-plankton are generally thought to represent a negligible fraction of the total particulate organic carbon (POC) export flux in oligotrophic gyres due to their small size, slow individual sinking rates, and tight grazer control that leads to high rates of recycling in the euphotic zone. Based upon recent inverse modeling and network analysis however, it has been hypothesized that pico-plankton, including the cyanobacteria Synechococcus and Prochlorococcus, and nano-plankton contribute significantly to POC export, via formation and gravitational settling of aggregates and/or consumption of those aggregates by mesozooplankton, in proportion to their contribution to net primary production. This study presents total suspended particulate (>0.7 mu m) and particle size-fractionated (10-20 mu m, 20-53 mu m, >53 mu m) pigment concentrations from within and below the euphotic zone in the oligotrophic subtropical North Atlantic, collected using Niskin bottles and large volume in-situ pumps, respectively. Results show the indicator pigments for Synechococcus, Prochlorococcus and nano-eukaryotes are; (1) found at depths down to 500 m, and; (2) essentially constant, relative to the sum of all indicator pigments, across particle size fractions ranging from 10 mu m to >53 mu m. Based upon the presence of chlorophyll precursor and degradation pigments, and that in situ pumps do not effectively sample fecal pellets, it is concluded that these pigments were redistributed to deeper waters on larger, more rapidly sinking aggregates likely by gravitational settling and/or convective mixing. Using available pigment and ancillary data from these cruises, these Synechococcus, Prochlorococcus and nano-plankton derived aggregates are estimated to contribute 2-13% (5 +/- 4%), 1-20% (5 +/- 7%), and 6-43% (23 +/- 14%) of the total sediment trap POC flux measured on the same cruises, respectively. Furthermore, nano-eukaryotes contribute equally to POC export and autotrophic biomass, while cyanobacteria contributions to POC export are one-tenth of their contribution to autotrophic biomass. These field observations provide direct evidence that pico- and nano-plankton represent a significant contribution to the total POC export via formation of aggregates in this oligotrophic ocean gyre. We suggest that aggregate formation and fate should be included in ecosystem models, particularly as oligotrophic regions are hypothesized to expand in areal extent with warming and increased stratification in the future.
引用
收藏
页码:203 / 216
页数:14
相关论文
共 68 条
[31]   Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation [J].
Lomas, M. W. ;
Steinberg, D. K. ;
Dickey, T. ;
Carlson, C. A. ;
Nelson, N. B. ;
Condon, R. H. ;
Bates, N. R. .
BIOGEOSCIENCES, 2010, 7 (01) :57-70
[32]   Biogeochemical responses to late-winter storms in the Sargasso Sea. IV. Rapid succession of major phytoplankton groups [J].
Lomas, M. W. ;
Roberts, N. ;
Lipschultz, F. ;
Krause, J. W. ;
Nelson, D. M. ;
Bates, N. R. .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2009, 56 (06) :892-908
[33]   Potential controls on interannual partitioning of organic carbon during the winter/spring phytoplankton bloom at the Bermuda Atlantic Time-series Study (BATS) site [J].
Lomas, MW ;
Bates, NR .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2004, 51 (11) :1619-1636
[34]  
LOMAS MW, 2002, EOS T AM GEOPHYS UN, V83, P559
[35]   THE USE OF GUT FLUORESCENCE TO ESTIMATE GRAZING BY OCEANIC SALPS [J].
MADIN, LP ;
CETTA, CM .
JOURNAL OF PLANKTON RESEARCH, 1984, 6 (03) :475-492
[36]   Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean [J].
Marañón, E ;
Holligan, PM ;
Varela, M ;
Mouriño, B ;
Bale, AJ .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2000, 47 (05) :825-857
[37]   Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms [J].
McGillicuddy, Dennis J., Jr. ;
Anderson, Laurence A. ;
Bates, Nicholas R. ;
Bibby, Thomas ;
Buesseler, Ken O. ;
Carlson, Craig A. ;
Davis, Cabell S. ;
Ewart, Courtney ;
Falkowski, Paul G. ;
Goldthwait, Sarah A. ;
Hansell, Dennis A. ;
Jenkins, William J. ;
Johnson, Rodney ;
Kosnyrev, Valery K. ;
Ledwell, James R. ;
Li, Qian P. ;
Siegel, David A. ;
Steinberg, Deborah K. .
SCIENCE, 2007, 316 (5827) :1021-1026
[38]   SEASONAL PATTERNS OF OCEAN BIOGEOCHEMISTRY AT THE UNITED-STATES JGOFS BERMUDA ATLANTIC TIME-SERIES STUDY SITE [J].
MICHAELS, AF ;
KNAP, AH ;
DOW, RL ;
GUNDERSEN, K ;
JOHNSON, RJ ;
SORENSEN, J ;
CLOSE, A ;
KNAUER, GA ;
LOHRENZ, SE ;
ASPER, VA ;
TUEL, M ;
BIDIGARE, R .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 1994, 41 (07) :1013-1038
[39]   PRIMARY PRODUCTION, SINKING FLUXES AND THE MICROBIAL FOOD WEB [J].
MICHAELS, AF ;
SILVER, MW .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1988, 35 (04) :473-490
[40]   COMPARATIVE PHYSIOLOGY OF SYNECHOCOCCUS AND PROCHLOROCOCCUS - INFLUENCE OF LIGHT AND TEMPERATURE ON GROWTH, PIGMENTS, FLUORESCENCE AND ABSORPTIVE PROPERTIES [J].
MOORE, LR ;
GOERICKE, R ;
CHISHOLM, SW .
MARINE ECOLOGY PROGRESS SERIES, 1995, 116 (1-3) :259-275