Lagrangians galore

被引:60
作者
Nucci, M. C. [1 ]
Leach, P. G. L. [2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ KwaZulu Natal, Sch Mat Sci, ZA-4041 Durban, South Africa
关键词
D O I
10.1063/1.2821612
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Searching for a Lagrangian may seem either a trivial endeavor or an impossible task. In this paper, we show that the Jacobi last multiplier associated with the Lie symmetries admitted by simple models of classical mechanics produces (too?) many Lagrangians in a simple way. We exemplify the method by such a classic as the simple harmonic oscillator, the harmonic oscillator in disguise [H. Goldstein, Classical Mechanics, 2nd edition (Addison-Wesley, Reading, MA, 1980)], and the damped harmonic oscillator. This is the first paper in a series dedicated to this subject. (c) 2007 American Institute of Physics.
引用
收藏
页数:16
相关论文
共 23 条
[1]  
[Anonymous], APPL LIES THEORY ORD
[2]  
[Anonymous], 1886, VORLESUNGEN DYNAMIK
[3]  
Courant, 1953, METHODS MATH PHYS
[4]  
Goldstein H., 1980, Classical Mechanics
[5]  
HEREMAN W, 1994, EUROMATH B, V1, P45
[6]  
HEREMAN W, 1996, CRC HDB LIE GR ANAL, V3, P367
[7]  
Jacobi C G J, 1844, J. Reine Angew. Math, V27, P199
[8]  
Jacobi C G J., 1845, J. Reine Angew. Math, V29, P333
[9]  
Jacobi C G J., 1844, Giornale Arcadico di Scienze, Lettere ed Arti, V99, P129
[10]  
JACOBI CGJ, 1842, SEANCES ACAD SCI, V15, P202