Influence of Fermi velocity engineering on electronic and optical properties of graphene superlattices

被引:3
作者
Aram, Tahereh Nemati [1 ,2 ]
Asgari, Asghar [1 ,3 ]
机构
[1] Univ Tabriz, Res Inst Appl Phys & Astron, Tabriz, Iran
[2] Univ Grenoble Alpes, Inst Neel, F-38042 Grenoble, France
[3] Univ Western Australia, Sch Elect Elect & Comp Engn, Crawley, WA 6009, Australia
关键词
Graphene; Fermi velocity; Electronic and optical properties of graphene superlattices; MASSLESS DIRAC FERMIONS; GAP;
D O I
10.1016/j.physleta.2015.01.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, using Kronig-Penney model, the electronic states in graphene-based superlattices with various substrates and considering exact electron Fermi velocity values are investigated. The analysis of our results clearly indicates that the difference between Fermi velocity values of gaped and gapless graphene regions determines the patency rate of band gap. Also, using transfer matrix method (TMM) the absorbance spectrum of mentioned structures is calculated. The more important result is that the absorbance of these structures is significantly near zero. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:974 / 978
页数:5
相关论文
共 35 条
  • [11] Room-temperature ballistic transport in narrow graphene strips
    Gunlycke, D.
    Lawler, H. M.
    White, C. T.
    [J]. PHYSICAL REVIEW B, 2007, 75 (08)
  • [12] Fermi velocity engineering in graphene by substrate modification
    Hwang, Choongyu
    Siegel, David A.
    Mo, Sung-Kwan
    Regan, William
    Ismach, Ariel
    Zhang, Yuegang
    Zettl, Alex
    Lanzara, Alessandra
    [J]. SCIENTIFIC REPORTS, 2012, 2
  • [13] Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering
    Jang, C.
    Adam, S.
    Chen, J. -H.
    Williams, D.
    Das Sarma, S.
    Fuhrer, M. S.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [14] Electron-Electron Interactions in Graphene: Current Status and Perspectives
    Kotov, Valeri N.
    Uchoa, Bruno
    Pereira, Vitor M.
    Guinea, F.
    Castro Neto, A. H.
    [J]. REVIEWS OF MODERN PHYSICS, 2012, 84 (03) : 1067 - 1125
  • [15] Manipulating electrons in nanostructured semiconductors
    Kotthaus, JP
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2002, 32 (02) : 257 - 258
  • [16] Measurement of the elastic properties and intrinsic strength of monolayer graphene
    Lee, Changgu
    Wei, Xiaoding
    Kysar, Jeffrey W.
    Hone, James
    [J]. SCIENCE, 2008, 321 (5887) : 385 - 388
  • [17] Electronic band gaps and transport properties in aperiodic bilayer graphene superlattices of Thue-Morse sequence
    Li, Changan
    Cheng, Hemeng
    Chen, Ruofan
    Ma, Tianxing
    Wang, Li-Gang
    Song, Yun
    Lin, Hai-Qing
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (17)
  • [18] Graphene superlattice with periodically modulated Dirac gap
    Maksimova, G. M.
    Azarova, E. S.
    Telezhnikov, A. V.
    Burdov, V. A.
    [J]. PHYSICAL REVIEW B, 2012, 86 (20)
  • [19] Transport fingerprints at graphene superlattice Dirac points induced by a boron nitride substrate
    Martinez-Gordillo, Rafael
    Roche, Stephan
    Ortmann, Frank
    Pruneda, Miguel
    [J]. PHYSICAL REVIEW B, 2014, 89 (16):
  • [20] Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene
    Masir, M. Ramezani
    Vasilopoulos, P.
    Peeters, F. M.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11