Space-Time Hierarchical Clustering for Identifying Clusters in Spatiotemporal Point Data

被引:13
|
作者
Lamb, David S. [1 ]
Downs, Joni [2 ]
Reader, Steven [2 ]
机构
[1] Univ S Florida, Coll Educ, Dept Educ & Psychol Studies, Measurement & Res, 4202 E Fowler Ave, Tampa, FL 33620 USA
[2] Univ S Florida, Sch Geosci, 4202 E Fowler Ave, Tampa, FL 33620 USA
关键词
spatiotemporal; clustering; trajectories; TRAJECTORIES; ALGORITHM; MOVEMENT; SCALE;
D O I
10.3390/ijgi9020085
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding clusters of events is an important task in many spatial analyses. Both confirmatory and exploratory methods exist to accomplish this. Traditional statistical techniques are viewed as confirmatory, or observational, in that researchers are confirming an a priori hypothesis. These methods often fail when applied to newer types of data like moving object data and big data. Moving object data incorporates at least three parts: location, time, and attributes. This paper proposes an improved space-time clustering approach that relies on agglomerative hierarchical clustering to identify groupings in movement data. The approach, i.e., space-time hierarchical clustering, incorporates location, time, and attribute information to identify the groups across a nested structure reflective of a hierarchical interpretation of scale. Simulations are used to understand the effects of different parameters, and to compare against existing clustering methodologies. The approach successfully improves on traditional approaches by allowing flexibility to understand both the spatial and temporal components when applied to data. The method is applied to animal tracking data to identify clusters, or hotspots, of activity within the animal's home range.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] KSC-N: Clustering of Hierarchical Time Profile Data
    Joke Heylen
    Iven Van Mechelen
    Philippe Verduyn
    Eva Ceulemans
    Psychometrika, 2016, 81 : 411 - 433
  • [22] Point Patterns Occurring on Complex Structures in Space and Space-Time: An Alternative Network Approach
    Eckardt, Matthias
    Mateu, Jorge
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (02) : 312 - 322
  • [23] KSC-N: Clustering of Hierarchical Time Profile Data
    Heylen, Joke
    Van Mechelen, Iven
    Verduyn, Philippe
    Ceulemans, Eva
    PSYCHOMETRIKA, 2016, 81 (02) : 411 - 433
  • [24] Hierarchical modeling of space-time dendroclimatic fields: Comparing a frequentist and a Bayesian approach
    Cameletti, Michela
    Biondi, Franco
    ARCTIC ANTARCTIC AND ALPINE RESEARCH, 2019, 51 (01) : 115 - 127
  • [25] Application of simple clustering on space-time mapping of mean monthly rainfall pattern
    Nasseri, Mohsen
    Zahraie, Banafsheh
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2011, 31 (05) : 732 - 741
  • [26] Spatial and space-time clusters of suicides in the contiguous USA (2000-2019)
    Amin, Raid
    Guttmann, Rodney P.
    Rivera-Muniz, Bradly
    Holley, Matthew
    Uher, Misty
    ANNALS OF EPIDEMIOLOGY, 2022, 76 : 150 - 157
  • [27] Uncovering spatiotemporal micromobility patterns through the lens of space-time cubes and GIS tools
    Arias-Molinares, Daniela
    Garcia-Palomares, Juan Carlos
    Romanillos, Gustavo
    Gutierrez, Javier
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2023, 25 (03) : 403 - 427
  • [28] Combining and Assessing 2D Maps and Space-Time Cubes for Trajectory Data
    Goncalves, Tiago
    Afonso, Ana Paula
    Martins, Bruno
    BRITISH HCI 2015, 2015, : 273 - 274
  • [29] Trajectory Data Analyses for Pedestrian Space-time Activity Study
    Qi, Feng
    Du, Fei
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (72):
  • [30] Automatic trajectory recognition in Active Target Time Projection Chambers data by means of hierarchical clustering
    Dalitz, Christoph
    Ayyad, Yassid
    Wilberg, Jens
    Aymans, Lukas
    Bazin, Daniel
    Mittig, Wolfgang
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 235 : 159 - 168