Space-Time Hierarchical Clustering for Identifying Clusters in Spatiotemporal Point Data

被引:13
|
作者
Lamb, David S. [1 ]
Downs, Joni [2 ]
Reader, Steven [2 ]
机构
[1] Univ S Florida, Coll Educ, Dept Educ & Psychol Studies, Measurement & Res, 4202 E Fowler Ave, Tampa, FL 33620 USA
[2] Univ S Florida, Sch Geosci, 4202 E Fowler Ave, Tampa, FL 33620 USA
关键词
spatiotemporal; clustering; trajectories; TRAJECTORIES; ALGORITHM; MOVEMENT; SCALE;
D O I
10.3390/ijgi9020085
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding clusters of events is an important task in many spatial analyses. Both confirmatory and exploratory methods exist to accomplish this. Traditional statistical techniques are viewed as confirmatory, or observational, in that researchers are confirming an a priori hypothesis. These methods often fail when applied to newer types of data like moving object data and big data. Moving object data incorporates at least three parts: location, time, and attributes. This paper proposes an improved space-time clustering approach that relies on agglomerative hierarchical clustering to identify groupings in movement data. The approach, i.e., space-time hierarchical clustering, incorporates location, time, and attribute information to identify the groups across a nested structure reflective of a hierarchical interpretation of scale. Simulations are used to understand the effects of different parameters, and to compare against existing clustering methodologies. The approach successfully improves on traditional approaches by allowing flexibility to understand both the spatial and temporal components when applied to data. The method is applied to animal tracking data to identify clusters, or hotspots, of activity within the animal's home range.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Toward space-time buffering for spatiotemporal proximity analysis of movement data
    Yuan, Hui
    Chen, Bi Yu
    Li, Qingquan
    Shaw, Shih-Lung
    Lam, William H. K.
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2018, 32 (06) : 1211 - 1246
  • [2] Space-time hierarchical radiosity with clustering and higher-order wavelets
    Damez, C
    Holzschuch, N
    Sillion, FX
    COMPUTER GRAPHICS FORUM, 2004, 23 (02) : 129 - 141
  • [3] Spatial clustering and space-time clusters of leukemia among children in Germany, 1987-2007
    Schmiedel, Sven
    Blettner, Maria
    Kaatsch, Peter
    Schuz, Joachim
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2010, 25 (09) : 627 - 633
  • [4] Application of Agglomerative Hierarchical Clustering for Clustering of Time Series Data
    Radovanovic, Ana
    Li, Junshi
    Milanovic, Jovica, V
    Milosavljevic, Nina
    Storchi, Riccardo
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 640 - 644
  • [5] Different levels of 3D: An evaluation of visualized discrete spatiotemporal data in space-time cubes
    Kjellin, Andreas
    Pettersson, Lars Winkler
    Seipel, Stefan
    Lind, Mats
    INFORMATION VISUALIZATION, 2010, 9 (02) : 152 - 164
  • [6] Composite likelihood inference for space-time point processes
    Jalilian, Abdollah
    Cuevas-Pacheco, Francisco
    Xu, Ganggang
    Waagepetersen, Rasmus
    BIOMETRICS, 2025, 81 (01)
  • [7] Clustering space-time series: FSTAR as a flexible STAR approach
    Otranto, Edoardo
    Mucciardi, Massimo
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (01) : 175 - 199
  • [8] Detecting space-time cancer clusters using residential histories
    Jacquez, Geoffrey M.
    Meliker, Jaymie R.
    DEFENSE TRANSFORMATION AND NET-CENTRIC SYSTEMS 2007, 2007, 6578
  • [9] Space-time interaction amongst clusters of mining induced seismicity
    Kijko, A
    Funk, CW
    PURE AND APPLIED GEOPHYSICS, 1996, 147 (02) : 277 - 288
  • [10] Space-time clustering of elevated thyroid stimulating hormone levels
    Pearce, Mark S.
    McNally, Richard J. Q.
    Day, Julie
    Korada, S. Murthy
    Turner, Steve
    Cheetham, Tim D.
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2011, 26 (05) : 405 - 411