Addendum To: Almost Ricci solitons and K-contact geometry

被引:0
|
作者
Sharma, Ramesh [1 ]
机构
[1] Univ New Haven, West Haven, CT 06516 USA
关键词
Ricci soliton; contact metric structure; K-contact; Einstein Sasakian; infinitesimal automorphism;
D O I
10.1007/s00022-021-00615-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve the previous result "A complete Ricci soliton whose metric g is K-contact and the soliton vector field X is strictly contact, is compact Sasakian Einstein" and show that, if a complete Ricci soliton (M, g, X) whose metric g is a contact metric and the soliton vector field X is strictly contact, then X is an infinitesimal automorphism and g is Einstein. Finally, for a Ricci soliton with X as the Reeb vector field, we show that (M, g) is compact Einstein and and Sasakian.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Geometry of Ricci Solitons
    Huai-Dong CAO (Dedicated to the memory of Shiing-Shen Cherri)
    Chinese Annals of Mathematics, 2006, (02) : 121 - 142
  • [42] Geometry of Ricci solitons
    Cao, Huai-Dong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (02) : 121 - 142
  • [43] Geometry of Ricci Solitons*
    Huai-Dong Cao
    Chinese Annals of Mathematics, Series B, 2006, 27 : 121 - 142
  • [44] Back to Almost Ricci Solitons
    Rovenski, Vladimir
    Stepanov, Sergey
    Tsyganok, Irina
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 208 - 214
  • [45] HOMOGENEOUS RICCI ALMOST SOLITONS
    Calvino-Louzao, Esteban
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    Vazquez-Lorenzo, Ramon
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (02) : 531 - 546
  • [46] A note on almost Ricci solitons
    Sharief Deshmukh
    Hana Al-Sodais
    Analysis and Mathematical Physics, 2020, 10
  • [47] A note on almost Ricci solitons
    Deshmukh, Sharief
    Al-Sodais, Hana
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [48] Homogeneous Ricci almost solitons
    Esteban Calviño-Louzao
    Manuel Fernández-López
    Eduardo García-Río
    Ramón Vázquez-Lorenzo
    Israel Journal of Mathematics, 2017, 220 : 531 - 546
  • [49] η-Ricci Solitons on N(k)-Contact Metric Manifolds
    Sarkar, Avijit
    Sardar, Arpan
    FILOMAT, 2021, 35 (11) : 3879 - 3889
  • [50] RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD
    Patra, Dhriti Sundar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (05) : 1315 - 1325