Addendum To: Almost Ricci solitons and K-contact geometry

被引:0
|
作者
Sharma, Ramesh [1 ]
机构
[1] Univ New Haven, West Haven, CT 06516 USA
关键词
Ricci soliton; contact metric structure; K-contact; Einstein Sasakian; infinitesimal automorphism;
D O I
10.1007/s00022-021-00615-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve the previous result "A complete Ricci soliton whose metric g is K-contact and the soliton vector field X is strictly contact, is compact Sasakian Einstein" and show that, if a complete Ricci soliton (M, g, X) whose metric g is a contact metric and the soliton vector field X is strictly contact, then X is an infinitesimal automorphism and g is Einstein. Finally, for a Ricci soliton with X as the Reeb vector field, we show that (M, g) is compact Einstein and and Sasakian.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Almost Cosymplectic (k, μ)-metrics as η-Ricci Solitons
    Wang, Wenjie
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (01) : 58 - 72
  • [32] K-Ricci-Bourguignon Almost Solitons
    De, Uday Chand
    De, Krishnendu
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 63 - 71
  • [33] ALMOST KENMOTSU (k, μ)'-METRICS AS η-RICCI SOLITONS
    Wang, Wenjie
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (01): : 77 - 89
  • [34] ALMOST CONTACT 3-MANIFOLDS AND RICCI SOLITONS
    Cho, Jong Taek
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (01)
  • [35] Ricci almost solitons
    Pigola, Stefano
    Rigoli, Marco
    Rimoldi, Michele
    Setti, Alberto G.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (04) : 757 - 799
  • [36] Ricci solitons and gradient Ricci solitons on 3-dimensional normal almost contact metric manifolds
    De, Uday Chand
    Turan, Mine
    Yildiz, Ahmet
    De, Avik
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 127 - 142
  • [37] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [38] h-Almost Ricci-Yamabe Solitons in Paracontact Geometry
    De, Uday Chand
    Khan, Mohammad Nazrul Islam
    Sardar, Arpan
    MATHEMATICS, 2022, 10 (18)
  • [39] Torse-Forming η-Ricci Solitons in Almost Paracontact η-Einstein Geometry
    Blaga, Adara M.
    Crasmareanu, Mircea
    FILOMAT, 2017, 31 (02) : 499 - 504
  • [40] Generalized almost-Kähler-Ricci solitons ☆
    Albanese, Michael
    Barbaro, Giuseppe
    Lejmi, Mehdi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 97