Predicting crystallisation propensity of small molecules

被引:0
作者
Wicker, J. [1 ]
Cooper, R. [1 ]
David, W. [2 ]
机构
[1] Univ Oxford, Chem Crystallog, Oxford, England
[2] ISIS Facil, Rutherford Appleton Lab, Chilton, England
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2014年 / 70卷
关键词
crystallisation propensity; machine learning;
D O I
10.1107/S2053273314083715
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MS112.P08
引用
收藏
页码:C1628 / C1628
页数:1
相关论文
共 50 条
[41]   Predicting Designability of Small Proteins from Graph Features of Contact Maps [J].
Leelananda, Sumudu P. ;
Jernigan, Robert L. ;
Kloczkowski, Andrzej .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2016, 23 (05) :400-411
[42]   Machine Learning and Dataming Algorithms for Predicting Accidental Small Forest Fires [J].
Iyer, Vasanth ;
Iyengar, S. Sitharama ;
Paramesh, N. ;
Murthy, Garmiela Rama ;
Srinivas, Mandalika B. .
PROCEEDINGS OF SENSORCOMM 2011, THE FIFTH INTERNATIONAL CONFERENCE ON SENSOR TECHNOLOGIES AND APPLICATIONS, 2011, :116-121
[43]   Predicting blood-brain barrier permeability of molecules with a large language model and machine learning [J].
Huang, Eddie T. C. ;
Yang, Jai-Sing ;
Liao, Ken Y. K. ;
Tseng, Warren C. W. ;
Lee, C. K. ;
Gill, Michelle ;
Compas, Colin ;
See, Simon ;
Tsai, Fuu-Jen .
SCIENTIFIC REPORTS, 2024, 14 (01)
[44]   WaSPred: A reliable AI-based water solubility predictor for small molecules [J].
Di Stefano, Miriana ;
Galati, Salvatore ;
Lonzi, Chiara ;
Granchi, Carlotta ;
Poli, Giulio ;
Tuccinardi, Tiziano ;
Macchia, Marco .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2024, 666
[45]   Prediction of antischistosomal small molecules using machine learning in the era of big data [J].
Kwofie, Samuel K. ;
Agyenkwa-Mawuli, Kwasi ;
Broni, Emmanuel ;
Miller III, Whelton A. ;
Wilson, Michael D. .
MOLECULAR DIVERSITY, 2022, 26 (03) :1597-1607
[46]   Machine learning to predict retention time of small molecules in nano-HPLC [J].
Sergey Osipenko ;
Inga Bashkirova ;
Sergey Sosnin ;
Oxana Kovaleva ;
Maxim Fedorov ;
Eugene Nikolaev ;
Yury Kostyukevich .
Analytical and Bioanalytical Chemistry, 2020, 412 :7767-7776
[47]   Deep Modeling of Regulating Effects of Small Molecules on Longevity-Associated Genes [J].
You, Jiaying ;
Hsing, Michael ;
Cherkasov, Artem .
PHARMACEUTICALS, 2021, 14 (10)
[48]   Novel Computational Approach to Predict Off-Target Interactions for Small Molecules [J].
Rao, Mohan S. ;
Gupta, Rishi ;
Liguori, Michael J. ;
Hu, Mufeng ;
Huang, Xin ;
Mantena, Srinivasa R. ;
Mittelstadt, Scott W. ;
Blomme, Eric A. G. ;
Van Vleet, Terry R. .
FRONTIERS IN BIG DATA, 2019, 2
[49]   Prediction of antischistosomal small molecules using machine learning in the era of big data [J].
Samuel K. Kwofie ;
Kwasi Agyenkwa-Mawuli ;
Emmanuel Broni ;
Whelton A. Miller III ;
Michael D. Wilson .
Molecular Diversity, 2022, 26 :1597-1607
[50]   Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers [J].
Chi, Mingzhe ;
Gargouri, Rihab ;
Schrader, Tim ;
Damak, Kamel ;
Maalej, Ramzi ;
Sierka, Marek .
POLYMERS, 2022, 14 (01)