Predicting crystallisation propensity of small molecules

被引:0
作者
Wicker, J. [1 ]
Cooper, R. [1 ]
David, W. [2 ]
机构
[1] Univ Oxford, Chem Crystallog, Oxford, England
[2] ISIS Facil, Rutherford Appleton Lab, Chilton, England
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2014年 / 70卷
关键词
crystallisation propensity; machine learning;
D O I
10.1107/S2053273314083715
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MS112.P08
引用
收藏
页码:C1628 / C1628
页数:1
相关论文
共 50 条
  • [31] De Novo Design of Bioactive Small Molecules by Artificial Intelligence
    Merk, Daniel
    Friedrich, Lukas
    Grisoni, Francesca
    Schneider, Gisbert
    [J]. MOLECULAR INFORMATICS, 2018, 37 (1-2)
  • [32] Machine Learning guided early drug discovery of small molecules
    Pillai, Nikhil
    Dasgupta, Aparajita
    Sudsakorn, Sirimas
    Fretland, Jennifer
    Mavroudis, Panteleimon D.
    [J]. DRUG DISCOVERY TODAY, 2022, 27 (08) : 2209 - 2215
  • [33] Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models
    Mamitsuka, H
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1998, 33 (04) : 460 - 474
  • [34] Predicting Affinity and Specificity of Antigenic Peptide Binding to Major Histocompatibility Class I Molecules
    Sieker, Florian
    May, Andreas
    Zacharias, Martin
    [J]. CURRENT PROTEIN & PEPTIDE SCIENCE, 2009, 10 (03) : 286 - 296
  • [35] ProfhEX: AI-based platform for small molecules liability profiling
    Lunghini, Filippo
    Fava, Anna
    Pisapia, Vincenzo
    Sacco, Francesco
    Iaconis, Daniela
    Beccari, Andrea Rosario
    [J]. JOURNAL OF CHEMINFORMATICS, 2023, 15 (01)
  • [36] ProfhEX: AI-based platform for small molecules liability profiling
    Filippo Lunghini
    Anna Fava
    Vincenzo Pisapia
    Francesco Sacco
    Daniela Iaconis
    Andrea Rosario Beccari
    [J]. Journal of Cheminformatics, 15
  • [37] Development of an in silico consensus model for the prediction of the phospholipigenic potential of small molecules
    Schieferdecker, Sebastian
    Eberlein, Andreas
    Vock, Esther
    Beilmann, Mario
    [J]. COMPUTATIONAL TOXICOLOGY, 2022, 22
  • [38] Machine learning methods for pKa prediction of small molecules: Advances and challenges
    Wu, Jialu
    Kang, Yu
    Pan, Peichen
    Hou, Tingjun
    [J]. DRUG DISCOVERY TODAY, 2022, 27 (12)
  • [39] Benchmark study on deep neural network potentials for small organic molecules
    Modee, Rohit
    Laghuvarapu, Siddhartha
    Priyakumar, U. Deva
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2022, 43 (05) : 308 - 318
  • [40] Practical insights into predicting defaults in small and medium-sized enterprises
    Cheraghali, Hamid
    Molnar, Peter
    [J]. JOURNAL OF THE INTERNATIONAL COUNCIL FOR SMALL BUSINESS, 2024,