Stability of C0-semigroups and geometry of Banach spaces

被引:10
作者
Chill, R [1 ]
Tomilov, Y
机构
[1] Univ Ulm, Abt Angew Anal, D-89069 Ulm, Germany
[2] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
D O I
10.1017/S0305004103006893
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain new stability conditions for C-0-semigroups on Banach spaces having nontrivial Fourier type. On Hilbert spaces these conditions are sharp. For C-0-semigroups on general Banach spaces, we prove a new individual stability criterion. We also show that stronger versions of the range stability condition from [4] are not necessary for stability. This answers an open problem from [4].
引用
收藏
页码:493 / 511
页数:19
相关论文
共 33 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]  
Arendt W., 2001, MONOGRAPHS MATH, V96
[3]   STABILITY OF INDIVIDUAL ELEMENTS UNDER ONE-PARAMETER SEMIGROUPS [J].
BATTY, CJK ;
PHONG, VQ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 322 (02) :805-818
[4]  
Batty CJK, 1996, STUD MATH, V121, P167
[5]   Strong stability of bounded evolution families and semigroups [J].
Batty, CJK ;
Chill, R ;
Tomilov, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 193 (01) :116-139
[6]   Local spectra and individual stability of uniformly bounded C0-semigroups [J].
Batty, CJK ;
Van Neerven, J ;
Rabiger, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (05) :2071-2085
[7]   Tauberian theorems and stability of solutions of the Cauchy problem [J].
Batty, CJK ;
Van Neerven, J ;
Rabiger, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (05) :2087-2103
[8]  
Chill R, 1998, STUD MATH, V128, P55
[9]   Stability of semigroups of operators and spectral subspaces [J].
deLaubenfels, R ;
Phóng, VQ ;
Wang, SW .
SEMIGROUP FORUM, 2002, 64 (03) :337-354
[10]   Fractional Poisson equations and ergodic theorems for fractional coboundaries [J].
Derriennic, Y ;
Lin, M .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) :93-130