Analytic study on a (2+1)-dimensional nonlinear Schrodinger equation in the Heisenberg ferromagnetism

被引:48
作者
Liu, De-Yin
Tian, Bo [1 ]
Jiang, Yan
Xie, Xi-Yang
Wu, Xiao-Yu
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Heisenberg ferromagnetic spin chain; Multi-soliton solutions; Soliton interaction; SOLITON SPIN EXCITATIONS; CHAIN;
D O I
10.1016/j.camwa.2016.03.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a (2 + 1)-dimensional nonlinear Schrodinger equation for a (2 + 1)-dimensional Heisenberg ferromagnetic spin chain with the bilinear and anisotropic interactions is investigated. Via the Hirota method and symbolic computation, bilinear forms and multi-soliton solutions are derived. The one, two and three solitons are analyzed graphically and we find the amplitudes and widths of the two and three solitons keep invariant after each interaction. The bell-shape one soliton as well as parallel, crossed two and three solitons are respectively observed. Through the asymptotic analysis, expressions which denote the two solitons before and after the interactions are obtained and interactions between the two solitons are proved to be elastic. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2001 / 2007
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 2007, NONLINEAR FIBER OPTI
[2]  
[Anonymous], 2002, BOSE EINSTEIN CONDEN
[3]   Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole-dipole interaction [J].
Daniel, M ;
Kavitha, L ;
Amuda, R .
PHYSICAL REVIEW B, 1999, 59 (21) :13774-13781
[4]   Effect of twist inhomogeneity on soliton spin excitations in a helimagnet [J].
Daniel, M. ;
Beula, J. .
PHYSICS LETTERS A, 2009, 373 (32) :2841-2851
[5]   Localized spin excitations in an anisotropic Heisenberg ferromagnet with Dzyaloshinskii-Moriya interactions [J].
Daniel, M ;
Kavitha, L .
PHYSICAL REVIEW B, 2001, 63 (17)
[6]   Generating solitons by phase engineering of a Bose-Einstein condensate [J].
Denschlag, J ;
Simsarian, JE ;
Feder, DL ;
Clark, CW ;
Collins, LA ;
Cubizolles, J ;
Deng, L ;
Hagley, EW ;
Helmerson, K ;
Reinhardt, WP ;
Rolston, SL ;
Schneider, BI ;
Phillips, WD .
SCIENCE, 2000, 287 (5450) :97-101
[7]   Anti-dark solitons for a variable-coefficient higher-order nonlinear Schrodinger equation in an inhomogeneous optical fiber [J].
Feng, Yu-Jie ;
Gao, Yi-Tian ;
Sun, Zhi-Yuan ;
Zuo, Da-Wei ;
Shen, Yu-Jia ;
Sun, Yu-Hao ;
Xue, Long ;
Yu, Xin .
PHYSICA SCRIPTA, 2015, 90 (04)
[8]  
Hasegawa A., 2003, Optical Solitons in Fibers
[9]  
Hirota R., 2004, The direct method in soliton theory
[10]   SOLITON EXCITATIONS IN THE ALTERNATING FERROMAGNETIC HEISENBERG CHAIN [J].
HUANG, GX ;
SHI, ZP ;
DAI, XX ;
TAO, R .
PHYSICAL REVIEW B, 1991, 43 (13) :11197-11206