Thin-walled beams: the case of the rectangular cross-section

被引:27
|
作者
Freddi, L
Morassi, A
Paroni, R
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Dipartimento Georisorse & Terr, I-33100 Udine, Italy
[3] Univ Sassari, Dipartimento Architettura & Pianificaz, I-07041 Alghero, Italy
关键词
thin-walled cross-section beams; linear elasticity; Gamma-convergence; dimension reduction;
D O I
10.1007/s10659-004-7193-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present an asymptotic analysis of the three-dimensional problem for a thin linearly elastic cantilever Omega(epsilon) = omega(epsilon) x ( 0, l) with rectangular cross-section omega(epsilon) of sides epsilon and epsilon(2), as epsilon goes to zero. Under suitable assumptions on the given loads, we show that the three-dimensional problem converges in a variational sense to the classical one-dimensional model for extension, flexure and torsion of thin-walled beams.
引用
收藏
页码:45 / 66
页数:22
相关论文
共 50 条