Scale-invariance of random populations: from Paretian to Poissonian fractality

被引:17
作者
Efiazar, Iddo [1 ]
Klafter, Joseph
机构
[1] Holon Inst Technol, Dept Technol Management, IL-58102 Holon, Israel
[2] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Med, IL-69978 Tel Aviv, Israel
关键词
fractals; scale-invariance; renormalization; paretian fractality; Poisson processes; Poissonian fractality; extreme value distributions; levy stable distributions;
D O I
10.1016/j.physa.2007.04.044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Random populations represented by stochastically scattered collections of real-valued points are abundant across many fields of science. Fractality, in the context of random populations, is conventionally associated with a Paretian distribution of the population's values. Using a Poissonian approach to the modeling of random populations, we introduce a definition of "Poissonian fractality" based on the notion of scale-invariance. This definition leads to the characterization of four different classes of Fractal Poissonian Populations-three of which being non-Paretian objects. The Fractal Poissonian Populations characterized turn out to be the unique fixed points of natural renormalizations, and turn out to be intimately related to Extreme Value distributions and to Levy Stable distributions. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 189
页数:19
相关论文
共 26 条
  • [11] GUYON E, 1991, FRACTAL FORMS
  • [12] Havlin S., 1991, Fractals and Disordered Systems, P97
  • [13] Kingman J. F. C., 1993, POISSON PROCESSES
  • [14] Levy P, 1954, THEORIE ADDITION VAR, VSecond
  • [15] Lowen SB, 2005, WILEY SER PROBAB ST, P1, DOI 10.1002/0471754722
  • [16] ON A CLASS OF SELF-SIMILAR PROCESSES
    MAEJIMA, M
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (02): : 235 - 245
  • [17] Mandelbrot B., 1982, FRACTAL GEOMETRY NAT
  • [18] FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS
    MANDELBROT, BB
    VANNESS, JW
    [J]. SIAM REVIEW, 1968, 10 (04) : 422 - +
  • [19] Pareto V., 1966, OEUVRES COMPLETES, V7
  • [20] Peitgen H., 1992, NEW FRONTIERS SCI