Joint Identification of Multiple Genetic Variants via Elastic-Net Variable Selection in a Genome-Wide Association Analysis

被引:73
作者
Cho, Seoae
Kim, Kyunga [2 ]
Kim, Young Jin
Lee, Jong-Keuk [3 ]
Cho, Yoon Shin
Lee, Jong-Young
Han, Bok-Ghee
Kim, Heebal [4 ]
Ott, Jurg [5 ]
Park, Taesung [1 ,6 ]
机构
[1] Seoul Natl Univ, Dept Stat, Interdisciplinary Program Bioinformat, Seoul 151747, South Korea
[2] Sookmyung Womens Univ, Dept Stat, Seoul 140742, South Korea
[3] Univ Ulsan, Coll Med, Asan Inst Life Sci, Ulsan 138736, South Korea
[4] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 151921, South Korea
[5] Beijing Inst Genom, Beijing 100029, Peoples R China
[6] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Genome-wide association; multiple regression; elastic-net variable selection; empirical replication; adult height; IGF-I GENE; SEQUENCE VARIANTS; ADULT HEIGHT; LOCI; POLYMORPHISMS; LASSO; REGRESSION; RISK; REGULARIZATION;
D O I
10.1111/j.1469-1809.2010.00597.x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
P>Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome-wide association (GWA) studies have been conducted with large-scale data sets of genetic variants. Most of those studies have relied on single-marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi-stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic-net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false-positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.
引用
收藏
页码:416 / 428
页数:13
相关论文
共 50 条
[31]   A Graph-based Elastic Net for Variable Selection and Module Identification for Genomic Data Analysis [J].
Xia, Zheng ;
Zhou, Xiaobo ;
Chen, Wei ;
Chang, Chunqi .
2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, :357-362
[32]   Finding genes and variants for lipid levels after genome-wide association analysis [J].
Willer, Cristen J. ;
Mohlke, Karen L. .
CURRENT OPINION IN LIPIDOLOGY, 2012, 23 (02) :98-103
[33]   Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis [J].
Peltola, Tomi ;
Marttinen, Pekka ;
Vehtari, Aki .
PLOS ONE, 2012, 7 (11)
[34]   Identification and Validation of a Biomarker Signature in Patients With Resectable Pancreatic Cancer via Genome-Wide Screening for Functional Genetic Variants [J].
Dimitrakopoulos, Christos ;
Vrugt, Bart ;
Flury, Renata ;
Schraml, Peter ;
Knippschild, Uwe ;
Wild, Peter ;
Hoerstrup, Simon ;
Henne-Bruns, Doris ;
Wuerl, Peter ;
Graf, Rolf ;
Breitenstein, Stefan ;
Bond, Gareth ;
Beerenwinkel, Niko ;
Grochola, Lukasz Filip .
JAMA SURGERY, 2019, 154 (06)
[35]   Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond [J].
Grarup, Niels ;
Sandholt, Camilla H. ;
Hansen, Torben ;
Pedersen, Oluf .
DIABETOLOGIA, 2014, 57 (08) :1528-1541
[36]   Genome-Wide Association Study Identifies Genetic Variants Associated with Rotator Cuff Tear-A Pilot Study [J].
An, Hyun-Ju ;
Kim, Jae-Hwa ;
Yoon, Siyeong ;
Choi, Junwon ;
Koo, Jeongmo ;
Lee, Soonchul .
DIAGNOSTICS, 2022, 12 (10)
[37]   Joint Analysis of Functional Genomic Data and Genome-wide Association Studies of 18 Human Traits [J].
Pickrell, Joseph K. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2014, 94 (04) :559-573
[38]   Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization [J].
Liu, Jin ;
Huang, Jian ;
Ma, Shuangge .
PLOS ONE, 2012, 7 (12)
[39]   Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis [J].
Baranzini, Sergio E. ;
Wang, Joanne ;
Gibson, Rachel A. ;
Galwey, Nicholas ;
Naegelin, Yvonne ;
Barkhof, Frederik ;
Radue, Ernst-Wilhelm ;
Lindberg, Raija L. P. ;
Uitdehaag, Bernard M. G. ;
Johnson, Michael R. ;
Angelakopoulou, Aspasia ;
Hall, Leslie ;
Richardson, Jill C. ;
Prinjha, Rab K. ;
Gass, Achim ;
Geurts, Jeroen J. G. ;
Kragt, Jolijn ;
Sombekke, Madeleine ;
Vrenken, Hugo ;
Qualley, Pamela ;
Lincoln, Robin R. ;
Gomez, Refujia ;
Caillier, Stacy J. ;
George, Michaela F. ;
Mousavi, Hourieh ;
Guerrero, Rosa ;
Okuda, Darin T. ;
Cree, Bruce A. C. ;
Green, Ari J. ;
Waubant, Emmanuelle ;
Goodin, Douglas S. ;
Pelletier, Daniel ;
Matthews, Paul M. ;
Hauser, Stephen L. ;
Kappos, Ludwig ;
Polman, Chris H. ;
Oksenberg, Jorge R. .
HUMAN MOLECULAR GENETICS, 2009, 18 (04) :767-778
[40]   Genome-wide association analysis of osteochondrosis of the tibiotarsal joint in Norwegian Standardbred trotters [J].
Lykkjen, S. ;
Dolvik, N. I. ;
McCue, M. E. ;
Rendahl, A. K. ;
Mickelson, J. R. ;
Roed, K. H. .
ANIMAL GENETICS, 2010, 41 :111-120