Variable selection for 1D regression models

被引:11
作者
Olive, DJ [1 ]
Hawkins, DM
机构
[1] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
C-p; Cook's distance; generalized linear model; outlier; regression graphics; single index model;
D O I
10.1198/004017004000000590
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Variable selection. the search for j relevant predictor variables from a group of p candidates is a standard problem in regression analysis. The class of ID regression models is a broad class that includes generalized linear models. We show that existing variable selection algorithms, originally meant for multiple linear regression and based on ordinary least squares and Mallows's C-P, can also be used for ID models. Graphical aids for variable selection are also provided.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 2011, Categorical data analysis
[2]  
Brillinger D. R., 1983, A Festschrift for Erich L. Lehmann in Honor of His Sixty-Fifth Birthday, P97
[3]  
Burman P, 1995, BIOMETRIKA, V82, P877
[4]  
Chambers JM., 1983, WADSWORTH
[5]  
Collett D, 1991, MODELLING BINARY DAT
[6]  
Cook D.R., 1999, APPL REGRESSION INCL
[7]   Graphics for assessing the adequacy of regression models [J].
Cook, RD ;
Weisberg, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) :490-499
[8]   DETECTION OF INFLUENTIAL OBSERVATION IN LINEAR-REGRESSION [J].
COOK, RD .
TECHNOMETRICS, 1977, 19 (01) :15-18
[9]  
COX DR, 1972, J R STAT SOC B, V34, P187
[10]  
Daniel C., 1971, FITTING EQUATIONS DA