Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study

被引:15
|
作者
Librenza-Garcia, Diego [1 ,2 ,3 ]
Passos, Ives Cavalcante [1 ,2 ]
Feiten, Jacson Gabriel [1 ,2 ]
Lotufo, Paulo A. [4 ,5 ]
Goulart, Alessandra C. [4 ,5 ]
de Souza Santos, Itamar [4 ,5 ]
Viana, Maria Carmen [6 ]
Bensenor, Isabela M. [4 ,5 ]
Brunoni, Andre Russowsky [4 ,5 ,7 ]
机构
[1] Hosp Clin Porto Alegre, Lab Mol Psychiat, Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Programa Posgrad Psiquiatria & Ciencias Comportam, Porto Alegre, RS, Brazil
[3] McMaster Univ, Dept Psychiat & Behav Neurosci, Hamilton, ON, Canada
[4] Univ Sao Paulo, Dept Internal Med, Fac Med, Sao Paulo, Brazil
[5] Univ Sao Paulo, Univ Hosp, Sao Paulo, Brazil
[6] Univ Fed Espirito Santo, Dept Social Med, Postgrad Program Publ Hlth, Ctr Psychiat Epidemiol CEPEP, Vitoria, ES, Brazil
[7] Univ Sao Paulo, Dept & Inst Psychiat, Lab Neurosci LIM 27, Fac Med, Sao Paulo, Brazil
关键词
Incident depression; machine learning; major depressive disorder; prognosis; COMMON MENTAL-DISORDERS; GENERAL-POPULATION; GENDER-DIFFERENCES; CLASS IMBALANCE; RISK; QUESTIONNAIRE; DETERMINANTS; SYMPTOMS; PATTERNS; DISEASE;
D O I
10.1017/S0033291720001579
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Background. Depression is highly prevalent and marked by a chronic and recurrent course. Despite being a major cause of disability worldwide, little is known regarding the determinants of its heterogeneous course. Machine learning techniques present an opportunity to develop tools to predict diagnosis and prognosis at an individual level. Methods. We examined baseline (2008-2010) and follow-up (2012-2014) data of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), a large occupational cohort study. We implemented an elastic net regularization analysis with a 10-fold cross-validation procedure using socioeconomic and clinical factors as predictors to distinguish at follow-up: (1) depressed from non-depressed participants, (2) participants with incident depression from those who did not develop depression, and (3) participants with chronic (persistent or recurrent) depression from those without depression. Results. We assessed 15 105 and 13 922 participants at waves 1 and 2, respectively. The elastic net regularization model distinguished outcome levels in the test dataset with an area under the curve of 0.79 (95% CI 0.76-0.82), 0.71 (95% CI 0.66-0.77), 0.90 (95% CI 0.86-0.95) for analyses 1, 2, and 3, respectively. Conclusions. Diagnosis and prognosis related to depression can be predicted at an individual subject level by integrating low-cost variables, such as demographic and clinical data. Future studies should assess longer follow-up periods and combine biological predictors, such as genetics and blood biomarkers, to build more accurate tools to predict depression course.
引用
收藏
页码:2895 / 2903
页数:9
相关论文
共 50 条
  • [21] Software Defect Prediction Analysis Using Machine Learning Techniques
    Khalid, Aimen
    Badshah, Gran
    Ayub, Nasir
    Shiraz, Muhammad
    Ghouse, Mohamed
    SUSTAINABILITY, 2023, 15 (06)
  • [22] A Study on Software Effort Prediction Using Machine Learning Techniques
    Zhang, Wen
    Yang, Ye
    Wang, Qing
    EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING, ENASE 2011, 2013, 275 : 1 - 15
  • [23] Dynamic mortality prediction using machine learning techniques for acute cardiovascular cases
    Metsker, Oleg
    Sikorsky, Sergey
    Yakovlev, Aleksey
    Kovalchuk, Sergey
    7TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE ON COMPUTATIONAL SCIENCE, YSC2018, 2018, 136 : 351 - 358
  • [24] Prediction of postpartum depression using machine learning techniques from social media text
    Fatima, Iram
    Abbasi, Burhan Ud Din
    Khan, Sharifullah
    Al-Saeed, Majed
    Ahmad, Hafiz Farooq
    Mumtaz, Rafia
    EXPERT SYSTEMS, 2019, 36 (04)
  • [25] A Comparative Study for Depression Prediction Using Machine Learning Classification Models
    Pramanik, Rwittika
    Khare, Sandali
    Harshvardhan, G. M.
    Gourisaria, Mahendra Kumar
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 233 - 246
  • [26] Performance Analysis of Machine Learning Techniques on Software Defect Prediction using NASA Datasets
    Iqbal, Ahmed
    Aftab, Shabib
    Ali, Umair
    Nawaz, Zahid
    Sana, Laraib
    Ahmad, Munir
    Husen, Arif
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (05) : 300 - 308
  • [27] Development of Occupational Burnout Prediction Models using Machine Learning Techniques and Maslach Burnout Inventory
    Hernandez, Alexander A.
    Albina, Erlito M.
    Perez, Rustico P., Jr.
    2024 IEEE 15TH CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM, ICSGRC 2024, 2024, : 47 - 51
  • [28] Parametric Analysis of Heart Attack Prediction Using Machine Learning Techniques
    Ranga, Virender
    Rohila, D.
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2018, 11 (04): : 37 - 48
  • [29] Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques
    Islam M.M.
    Haque M.R.
    Iqbal H.
    Hasan M.M.
    Hasan M.
    Kabir M.N.
    SN Computer Science, 2020, 1 (5)
  • [30] Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study
    Zhang, Weina
    Liu, Han
    Silenzio, Vincent Michael Bernard
    Qiu, Peiyuan
    Gong, Wenjie
    JMIR MEDICAL INFORMATICS, 2020, 8 (04)