Scale-aware Automatic Augmentation for Object Detection

被引:30
作者
Chen, Yukang [1 ,2 ]
Li, Yanwei [1 ]
Kong, Tao [2 ]
Qi, Lu [1 ]
Chu, Ruihang [1 ,2 ]
Li, Lei [2 ]
Jia, Jiaya [1 ,3 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] ByteDance AI Lab, Beijing, Peoples R China
[3] SmartMore, Hong Kong, Peoples R China
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
关键词
D O I
10.1109/CVPR46437.2021.00944
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose Scale-aware AutoAug to learn data augmentation policies for object detection. We define a new scaleaware search space, where both image- and box-level augmentations are designed for maintaining scale invariance. Upon this search space, we propose a new search metric, termed Pareto Scale Balance, to facilitate search with high efficiency. In experiments, Scale-aware AutoAug yields significant and consistent improvement on various object detectors (e.g., RetinaNet, Faster R-CNN, Mask R-CNN, and FCOS), even compared with strong multi-scale training baselines. Our searched augmentation policies are transferable to other datasets and box-level tasks beyond object detection (e.g., instance segmentation and keypoint estimation) to improve performance. The search cost is much less than previous automated augmentation approaches for object detection. It is notable that our searched policies have meaningful patterns, which intuitively provide valuable insight for human data augmentation design. Code and models are available at https://github.com/Jia-ResearchLab/SA-AutoAug.
引用
收藏
页码:9558 / 9567
页数:10
相关论文
共 53 条
[1]  
[Anonymous], 2019, NeurIPS
[2]  
[Anonymous], 2019, ICML
[3]  
[Anonymous], 2018, NeurIPS
[4]  
[Anonymous], 2012, DICT EC
[5]   Load-balancing Sparse Matrix Vector Product Kernels on GPUs [J].
Anzt, Hartwig ;
Cojean, Terry ;
Chen, Yen-Chen ;
Dongarra, Jack ;
Flegar, Goran ;
Nayak, Pratik ;
Tomov, Stanimire ;
Tsai, Yuhsiang M. ;
Wang, Weichung .
ACM TRANSACTIONS ON PARALLEL COMPUTING, 2020, 7 (01)
[6]  
Bochkovskiy A., 2020, YOLOv4: Optimal Speed and Accuracy of Object Detection
[7]   Soft-NMS - Improving Object Detection With One Line of Code [J].
Bodla, Navaneeth ;
Singh, Bharat ;
Chellappa, Rama ;
Davis, Larry S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5562-5570
[8]  
Borji A., 2019, ARXIV191112451, Vabs/1911.12451
[9]  
Chen K., 2019, arXiv:1906.07155
[10]  
Chen P., 2020, ARXIV