Inverse p-median problems with variable edge lengths

被引:48
作者
Bonab, Fahimeh Baroughi [2 ]
Burkard, Rainer E. [1 ]
Gassner, Elisabeth [1 ]
机构
[1] Graz Univ Technol, Inst Optimizat & Discrete Math, A-8010 Graz, Austria
[2] Sahand Univ Technol, Dept Appl Math, Tabriz, Iran
基金
奥地利科学基金会;
关键词
Location problem; Inverse optimization; p-median; Complexity analysis; LOCATION-PROBLEMS; TREE; TIME;
D O I
10.1007/s00186-011-0346-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The inverse p-median problem with variable edge lengths on graphs is to modify the edge lengths at minimum total cost with respect to given modification bounds such that a prespecified set of p vertices becomes a p-median with respect to the new edge lengths. The problem is shown to be strongly NP-hard on general graphs and weakly NP-hard on series-parallel graphs. Therefore, the special case on a tree is considered: It is shown that the inverse 2-median problem with variable edge lengths on trees is solvable in polynomial time. For the special case of a star graph we suggest a linear time algorithm.
引用
收藏
页码:263 / 280
页数:18
相关论文
共 19 条
[1]   Combinatorial Algorithms for Inverse Absolute and Vertex 1-Center Location Problems on Trees [J].
Alizadeh, Behrooz ;
Burkard, Rainer E. .
NETWORKS, 2011, 58 (03) :190-200
[2]   Inverse 1-center location problems with edge length augmentation on trees [J].
Alizadeh, Behrooz ;
Burkard, Rainer E. ;
Pferschy, Ulrich .
COMPUTING, 2009, 86 (04) :331-343
[3]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[4]  
Benkoczi R, 2005, LECT NOTES COMPUT SC, V3669, P271
[5]   Inverse median location problems with variable coordinates [J].
Bonab, Fahimeh Baroughi ;
Burkard, Rainer E. ;
Alizadeh, Behrooz .
CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2010, 18 (03) :365-381
[6]   The inverse 1-median problem on a cycle [J].
Burkard, Rainer E. ;
Pleschiutschnig, Carmen ;
Zhang, Jianzhong .
DISCRETE OPTIMIZATION, 2008, 5 (02) :242-253
[7]   The inverse Fermat-Weber problem [J].
Burkard, Rainer E. ;
Galavii, Mohammadreza ;
Gassner, Elisabeth .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (01) :11-17
[8]   ON AN INSTANCE OF THE INVERSE SHORTEST PATHS PROBLEM [J].
BURTON, D ;
TOINT, PL .
MATHEMATICAL PROGRAMMING, 1992, 53 (01) :45-61
[9]   The inverse 1-maxian problem with edge length modification [J].
Gassner, Elisabeth .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (01) :50-67
[10]   COMPUTING THE 2-MEDIAN ON TREE NETWORKS IN O(N-LG-N) TIME [J].
GAVISH, B ;
SRIDHAR, S .
NETWORKS, 1995, 26 (04) :305-317