Inverse p-median problems with variable edge lengths

被引:48
作者
Bonab, Fahimeh Baroughi [2 ]
Burkard, Rainer E. [1 ]
Gassner, Elisabeth [1 ]
机构
[1] Graz Univ Technol, Inst Optimizat & Discrete Math, A-8010 Graz, Austria
[2] Sahand Univ Technol, Dept Appl Math, Tabriz, Iran
基金
奥地利科学基金会;
关键词
Location problem; Inverse optimization; p-median; Complexity analysis; LOCATION-PROBLEMS; TREE; TIME;
D O I
10.1007/s00186-011-0346-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The inverse p-median problem with variable edge lengths on graphs is to modify the edge lengths at minimum total cost with respect to given modification bounds such that a prespecified set of p vertices becomes a p-median with respect to the new edge lengths. The problem is shown to be strongly NP-hard on general graphs and weakly NP-hard on series-parallel graphs. Therefore, the special case on a tree is considered: It is shown that the inverse 2-median problem with variable edge lengths on trees is solvable in polynomial time. For the special case of a star graph we suggest a linear time algorithm.
引用
收藏
页码:263 / 280
页数:18
相关论文
共 19 条
  • [1] Combinatorial Algorithms for Inverse Absolute and Vertex 1-Center Location Problems on Trees
    Alizadeh, Behrooz
    Burkard, Rainer E.
    [J]. NETWORKS, 2011, 58 (03) : 190 - 200
  • [2] Inverse 1-center location problems with edge length augmentation on trees
    Alizadeh, Behrooz
    Burkard, Rainer E.
    Pferschy, Ulrich
    [J]. COMPUTING, 2009, 86 (04) : 331 - 343
  • [3] [Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
  • [4] Benkoczi R, 2005, LECT NOTES COMPUT SC, V3669, P271
  • [5] Inverse median location problems with variable coordinates
    Bonab, Fahimeh Baroughi
    Burkard, Rainer E.
    Alizadeh, Behrooz
    [J]. CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2010, 18 (03) : 365 - 381
  • [6] The inverse 1-median problem on a cycle
    Burkard, Rainer E.
    Pleschiutschnig, Carmen
    Zhang, Jianzhong
    [J]. DISCRETE OPTIMIZATION, 2008, 5 (02) : 242 - 253
  • [7] The inverse Fermat-Weber problem
    Burkard, Rainer E.
    Galavii, Mohammadreza
    Gassner, Elisabeth
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (01) : 11 - 17
  • [8] ON AN INSTANCE OF THE INVERSE SHORTEST PATHS PROBLEM
    BURTON, D
    TOINT, PL
    [J]. MATHEMATICAL PROGRAMMING, 1992, 53 (01) : 45 - 61
  • [9] The inverse 1-maxian problem with edge length modification
    Gassner, Elisabeth
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (01) : 50 - 67
  • [10] COMPUTING THE 2-MEDIAN ON TREE NETWORKS IN O(N-LG-N) TIME
    GAVISH, B
    SRIDHAR, S
    [J]. NETWORKS, 1995, 26 (04) : 305 - 317