Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility

被引:384
作者
Hong, ZK [1 ]
Zhang, PB [1 ]
He, CL [1 ]
Qiu, XY [1 ]
Liu, AX [1 ]
Chen, L [1 ]
Chen, XS [1 ]
Jing, XB [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
polylactide; hydroxyapatite; composite; mechanical properties; biocompatibility; cell culture;
D O I
10.1016/j.biomaterials.2005.04.018
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In order to improve the bonding between hydroxyapatite (HAP) particles and poly(t-lactide) (PLLA), and hence to increase mechanical properties of the PLLA/HAP composite as potential bone substitute material. the HAP nano-particles were surface-grafted with PLLA and further blended with PLLA. The structure and properties of the composites were subsequently investigated by the mechanical property testing, the differential scanning calorimeter measurements (DSC), the scanning electron microscopy (SEM), the polarized optical microscopy (POM), and the cell culture. The PLLA molecules grafted oil (lie HAP surfaces, as inter-tying molecules, played an important role in improving the adhesive strength between the particles and the polymer matrix. At a low content (similar to 4 wt%) of surface grafted-HAP (g-HAP), the PLLA/g-HAP nano-composites exhibited higher bending strength and impact energy than the pristine PLLA, and at a higher g-HAP content (e.g., 20wt%), the modulus was remarkably increased, It implied that PLLA could be strengthened as well as toughened by g-HAP nano-particles. The results of biocompatibility test showed that the g-HAP existing in the PLLA composite facilitated both adhesion and proliferation of chondrocytes on the PLLA, g-HAP composite film, (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6296 / 6304
页数:9
相关论文
共 31 条
[1]  
[Anonymous], POLYMER
[2]   Osteoblast adhesion on biomaterials [J].
Anselme, K .
BIOMATERIALS, 2000, 21 (07) :667-681
[3]   Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications [J].
Boccaccini, AR ;
Maquet, V .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (16) :2417-2429
[4]   Surface modification of hydroxyapatite. Part II. Silica [J].
Borum, L ;
Wilson, OC .
BIOMATERIALS, 2003, 24 (21) :3681-3688
[5]   Surface modification of hydroxyapatite. Part I. Dodecyl alcohol [J].
Borum-Nicholas, L ;
Wilson, OC .
BIOMATERIALS, 2003, 24 (21) :3671-3679
[6]   FOCAL CONTACTS - TRANSMEMBRANE LINKS BETWEEN THE EXTRACELLULAR-MATRIX AND THE CYTOSKELETON [J].
BURRIDGE, K ;
FATH, K .
BIOESSAYS, 1989, 10 (04) :104-108
[7]   METABOLIC-REGULATION VIA INTRACELLULAR PH [J].
BUSA, WB ;
NUCCITELLI, R .
AMERICAN JOURNAL OF PHYSIOLOGY, 1984, 246 (04) :R409-R438
[8]   Preparation and characterisation of composites based on biodegradable polymers for "in vivo" application [J].
Calandrelli, L ;
Immirzi, B ;
Malinconico, M ;
Volpe, MG ;
Oliva, A ;
Della Ragione, F .
POLYMER, 2000, 41 (22) :8027-8033
[9]   Chemical synthesis of hydroxyapatite/poly(ε-caprolactone) composites [J].
Choi, DW ;
Marra, KG ;
Kumta, PN .
MATERIALS RESEARCH BULLETIN, 2004, 39 (03) :417-432
[10]   A study on grafting and characterization of HMDI-modified calcium hydrogenphosphate [J].
Dong, GC ;
Sun, JS ;
Yao, CH ;
Jiang, GJ ;
Huang, CW ;
Lin, FH .
BIOMATERIALS, 2001, 22 (23) :3179-3189