INVERSE DEGREE, RANDIC INDEX AND HARMONIC INDEX OF GRAPHS

被引:16
|
作者
Das, Kinkar Ch. [1 ]
Balachandran, Selvaraj [2 ]
Gutman, Ivan [3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] SASTRA Univ, Sch Humanities & Sci, Dept Math, Thanjavur, India
[3] Univ Kragujevac, Fac Sci, POB 60, Kragujevac 34000, Serbia
基金
新加坡国家研究基金会;
关键词
Degree (of vertex); Inverse degree; Randic index; Harmonic index; TOPOLOGICAL INDEXES; DIAMETER; CONNECTIVITY;
D O I
10.2298/AADM1702304D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V and edge set E. Let d(i) be the degree of the vertex v(i) of G. The inverse degree, Randic index, and harmonic index of G are defined as I D = Sigma v(i)epsilon V-1/di, R = Sigma v(i)v(j) epsilon E 1/root d(i)d(j) , and H = Sigma v(i)v(j) epsilon E 2/(d(i) + d(j)), respectively. We obtain relations between ID and R as well as between ID and H. Moreover, we prove that in the case of trees, ID > R and ID > H.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 50 条
  • [31] EXTREMAL VALUES FOR THE VARIATION OF THE RANDIC INDEX OF BICYCLIC GRAPHS
    Lv, Jian-Bo
    Li, Jianxi
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (04) : 1341 - 1347
  • [32] A proof of a conjecture on the Randic index of graphs with given girth
    Li, Xueliang
    Liu, Jianxi
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (15) : 3332 - 3335
  • [33] Extremal trees with given degree sequence for the Randic index
    Wang, Hua
    DISCRETE MATHEMATICS, 2008, 308 (15) : 3407 - 3411
  • [34] On two conjectures of Randic index and the largest signless Laplacian eigenvalue of graphs
    Deng, Hanyuan
    Balachandran, S.
    Ayyaswamy, S. K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (01) : 196 - 200
  • [35] General Randic index of unicyclic graphs with given diameter
    Alfuraidan, Monther Rashed
    Das, Kinkar Chandra
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 7 - 16
  • [36] On Harmonic Index and Diameter of Unicyclic Graphs
    Jerline, J. Amalorpava
    Michaelraj, L. Benedict
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (01): : 115 - 122
  • [37] ON THE HARMONIC INDEX AND DIAMETER OF UNICYCLIC GRAPHS
    Deng, Hanyuan
    Vetrik, Tomas
    Balachandran, Selvaraj
    MATHEMATICAL REPORTS, 2020, 22 (01): : 11 - 18
  • [38] On the Randic index
    Liu, Huiqing
    Lu, Mei
    Tian, Feng
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 44 (02) : 301 - 310
  • [39] ON A CONJECTURE OF HARMONIC INDEX AND DIAMETER OF GRAPHS
    Jerline, J. Amalorpava
    Michaelraj, L. Benedict
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2016, 40 (01): : 73 - 78
  • [40] On the Randic index
    Liu, HQ
    Lu, M
    Tian, F
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (03) : 345 - 354