INVERSE DEGREE, RANDIC INDEX AND HARMONIC INDEX OF GRAPHS

被引:16
作者
Das, Kinkar Ch. [1 ]
Balachandran, Selvaraj [2 ]
Gutman, Ivan [3 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] SASTRA Univ, Sch Humanities & Sci, Dept Math, Thanjavur, India
[3] Univ Kragujevac, Fac Sci, POB 60, Kragujevac 34000, Serbia
基金
新加坡国家研究基金会;
关键词
Degree (of vertex); Inverse degree; Randic index; Harmonic index; TOPOLOGICAL INDEXES; DIAMETER; CONNECTIVITY;
D O I
10.2298/AADM1702304D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V and edge set E. Let d(i) be the degree of the vertex v(i) of G. The inverse degree, Randic index, and harmonic index of G are defined as I D = Sigma v(i)epsilon V-1/di, R = Sigma v(i)v(j) epsilon E 1/root d(i)d(j) , and H = Sigma v(i)v(j) epsilon E 2/(d(i) + d(j)), respectively. We obtain relations between ID and R as well as between ID and H. Moreover, we prove that in the case of trees, ID > R and ID > H.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 25 条
[1]  
Bondy J., 2008, GRADUATE TEXTS MATH
[2]   ON DIAMETER AND INVERSE DEGREE OF CHEMICAL GRAPHS [J].
Chen, Xue-gang ;
Fujita, Shinya .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (01) :83-93
[3]   Diameter and inverse degree [J].
Dankelmann, Peter ;
Swart, Henda C. ;
van den Berg, Paul .
DISCRETE MATHEMATICS, 2008, 308 (5-6) :670-673
[4]   Inverse degree and edge-connectivity [J].
Dankelmann, Peter ;
Hellwig, Angelika ;
Volkmann, Lutz .
DISCRETE MATHEMATICS, 2009, 309 (09) :2943-2947
[5]   On Inverse Degree and Topological Indices of Graphs [J].
Das, Kinkar Ch. ;
Xu, Kexiang ;
Wang, Jinlan .
FILOMAT, 2016, 30 (08) :2111-2120
[6]   Comparison between the zeroth-order Randic index and the sum-connectivity index [J].
Das, Kinkar Ch. ;
Dehmer, Matthias .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 :585-589
[7]   On the harmonic index and the chromatic number of a graph [J].
Deng, Hanyuan ;
Balachandran, S. ;
Ayyaswamy, S. K. ;
Venkatakrishnan, Y. B. .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2740-2744
[8]  
Fajtlowicz S., 1987, C NUMER, V60, P187, DOI DOI 10.4236/APM.2014.45021
[9]   SOME EIGENVALUE PROPERTIES IN GRAPHS (CONJECTURES OF GRAFFITI .2.) [J].
FAVARON, O ;
MAHEO, M ;
SACLE, JF .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :197-220
[10]   GRAPH THEORY AND MOLECULAR-ORBITALS - TOTAL PI-ELECTRON ENERGY OF ALTERNANT HYDROCARBONS [J].
GUTMAN, I ;
TRINAJSTIC, N .
CHEMICAL PHYSICS LETTERS, 1972, 17 (04) :535-538