VERTEX COLOURINGS OF MULTIGRAPHS WITH FORBIDDANCES ON EDGES

被引:0
|
作者
Glebov, A. N. [1 ]
Pavlov, I. A. [2 ]
Khadaev, K. A. [3 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090, Russia
[3] Higher Sch Econ, 20 Myasnitskaya Str, Moscow 101000, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2020年 / 17卷
关键词
graph; multigraph; edge; colouring; list colouring; forbiddance; LIST-CHROMATIC INDEX;
D O I
10.33048/semi.2020.17.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study a new class of vertex colourings of multigraphs, where some pairs of colours are forbidden on the edges of a multigraph. We say that a multigraph G is (properly) (m, r)-colourable if for any given sets of r forbidden pairs of colours on the edges of G where exists a (proper) vertex m-colouring of G that respects all forbidden pairs. We determine all (properly) (m, r)-colourable stars, all (2, r)-colourable multigraphs for each r >= 1 and all (m, r)-colourable multighraphs, where r is large enough (close to m(2)). We also introduce a list version of (m, r)-colourability and establish (for the case of improper colourings) that the list (m, r)-colourability of a multigraph is equivalent to its (m, r)-colourability.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 8 条