Advanced control strategies for HVACR systemsAn overview: Part II: Soft and fusion control

被引:40
作者
Naidu, D. Subbaram [1 ]
Rieger, Craig G. [2 ]
机构
[1] Idaho State Univ, Sch Engn, Dept Elect Engn & Comp Sci, Pocatello, ID 83209 USA
[2] Idaho Natl Lab, Idaho Falls, ID 83415 USA
来源
HVAC&R RESEARCH | 2011年 / 17卷 / 02期
关键词
FAULT-TOLERANT CONTROL; MODEL-PREDICTIVE CONTROL; AIR-COOLED CHILLER; FUZZY CONTROL; GLOBAL OPTIMIZATION; NEURAL-NETWORK; GENETIC ALGORITHMS; BUILDING SYSTEMS; LOGIC; DESIGN;
D O I
10.1080/10789669.2011.555650
中图分类号
O414.1 [热力学];
学科分类号
摘要
A chronological overview of the advanced control strategies for HVACR is presented. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and the fusion or hybrid of hard and soft control techniques. Part I focused on hard-control strategies; Part II focuses on soft and fusion control and some future directions in HVAR research. This overview is not intended to be an exhaustive survey on this topic, and any omissions of other works is purely unintentional.
引用
收藏
页码:144 / 158
页数:15
相关论文
共 116 条
[1]  
A strom K.J., 1995, Adaptive Control, V2nd
[2]   A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems [J].
Alcalá, R ;
Casillas, J ;
Cordón, O ;
González, A ;
Herrera, F .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2005, 18 (03) :279-296
[3]   Fuzzy control of HVAC systems optimized by genetic algorithms [J].
Alcalá, R ;
Benítez, JM ;
Casillas, J ;
Cordón, O ;
Pérez, R .
APPLIED INTELLIGENCE, 2003, 18 (02) :155-177
[4]   Improving fuzzy logic controllers obtained by experts: a case study in HVAC systems [J].
Alcala, Rafael ;
Alcala-Fdez, Jesus ;
Gacto, Maria Jose ;
Herrera, Francisco .
APPLIED INTELLIGENCE, 2009, 31 (01) :15-30
[5]  
AMIN S, 2007, FLEXIBILITY BUSINESS, P1
[6]  
[Anonymous], 2003, Fuzzy Model Identification for Control
[7]  
[Anonymous], 2007, 2007 IEEE INT FUZZY, DOI [DOI 10.1109/FUZZY.2007.4295573, 10.1109/FUZZY.2007.4295573]
[8]   Constrained fuzzy logic approximation for indoor comfort and energy optimization [J].
Ari, S ;
Cosden, IA ;
Khalifa, HE ;
Dannenhoffer, JF ;
Wilcoxen, P ;
Isik, C .
NAFIPS 2005 - 2005 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, 2005, :500-504
[9]  
ARI S, 2006, P ANN M N AM FUZZ IN, P692
[10]  
Arima M, 1995, IEEE WESCANEX '95 - COMMUNICATIONS, POWER, AND COMPUTING, CONFERENCE PROCEEDINGS, VOLS 1 AND 2, P133, DOI 10.1109/WESCAN.1995.493959