Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter

被引:36
作者
Schmitt, Danielle L. [1 ]
Curtis, Stephanie D. [2 ]
Lyons, Anne C. [3 ]
Zhang, Jin-fan [3 ]
Chen, Mingyuan [3 ]
He, Catherine Y. [1 ]
Mehta, Sohum [1 ]
Shaw, Reuben J. [2 ]
Zhang, Jin [1 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[2] Salk Inst Biol Studies, Mol & Cell Biol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
[3] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
ACTIVATED PROTEIN-KINASE; ACTIVITY DYNAMICS; UPSTREAM KINASE; PHOSPHATASE; 2A; LKB1; PHOSPHORYLATION; LOCALIZATION; PATHWAY; GLUCOSE; VISUALIZATION;
D O I
10.1038/s41467-022-31190-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
AMP-activated protein kinase (AMPK) is a master regulator of cellular energetics which coordinates metabolism by phosphorylating a plethora of substrates throughout the cell. But how AMPK activity is regulated at different subcellular locations for precise spatiotemporal control over metabolism is unclear. Here we present a sensitive, single-fluorophore AMPK activity reporter (ExRai AMPKAR), which reveals distinct kinetic profiles of AMPK activity at the mitochondria, lysosome, and cytoplasm. Genetic deletion of the canonical upstream kinase liver kinase B1 (LKB1) results in slower AMPK activity at lysosomes but does not affect the response amplitude at lysosomes or mitochondria, in sharp contrast to the necessity of LKB1 for maximal cytoplasmic AMPK activity. We further identify a mechanism for AMPK activity in the nucleus, which results from cytoplasmic to nuclear shuttling of AMPK. Thus, ExRai AMPKAR enables illumination of the complex subcellular regulation of AMPK signaling. AMP activated protein kinase (AMPK) is a master regulator of cellular metabolism, but how AMPK activity is spatiotemporally regulated remains unclear. Here, Schmitt et al develop a sensitive biosensor for AMPK, which they use to uncover mechanisms for AMPK activity in the lysosome and nucleus.
引用
收藏
页数:12
相关论文
共 81 条
[1]   Investigation of the specificity and mechanism of action of the ULK1/AMPK inhibitor SBI-0206965 [J].
Ahwazi, Danial ;
Neopane, Katyayanee ;
Markby, Greg R. ;
Kopietz, Franziska ;
Ovens, Ashley J. ;
Dall, Morten ;
Hassing, Anna S. ;
Graesle, Pamina ;
Alshuweishi, Yazeed ;
Treebak, Jonas T. ;
Salt, Ian P. ;
Goransson, Olga ;
Zeqiraj, Elton ;
Scott, John W. ;
Sakamoto, Kei .
BIOCHEMICAL JOURNAL, 2021, 478 (15) :2977-2997
[2]   Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy [J].
Cameron, Kimberly O. ;
Kung, Daniel W. ;
Kalgutkar, Amit S. ;
Kurumbail, Ravi G. ;
Miller, Russell ;
Salatto, Christopher T. ;
Ward, Jessica ;
Withka, Jane M. ;
Bhattacharya, Samit K. ;
Boehm, Markus ;
Borzilleri, Kris A. ;
Brown, Janice A. ;
Calabrese, Matthew ;
Caspers, Nicole L. ;
Cokorinos, Emily ;
Conn, Edward L. ;
Dowling, Matthew S. ;
Edmonds, David J. ;
Eng, Heather ;
Fernando, Dilinie P. ;
Frisbie, Richard ;
Hepworth, David ;
Landro, James ;
Mao, Yuxia ;
Rajamohan, Francis ;
Reyes, Allan R. ;
Rose, Colin R. ;
Ryder, Tim ;
Shavnya, Andre ;
Smith, Aaron C. ;
Tu, Meihua ;
Wolford, Angela C. ;
Xiao, Jun .
JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (17) :8068-8081
[3]   Spatial control of AMPK signaling at subcellular compartments [J].
Chauhan, Anoop Singh ;
Zhuang, Li ;
Gan, Boyi .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2020, 55 (01) :17-32
[4]   A Highly Sensitive Fluorescent Akt Biosensor Reveals Lysosome-Selective Regulation of Lipid Second Messengers and Kinase Activity [J].
Chen, Mingyuan ;
Sun, Tengqian ;
Zhong, Yanghao ;
Zhou, Xin ;
Zhang, Jin .
ACS CENTRAL SCIENCE, 2021, 7 (12) :2009-2020
[5]   Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding [J].
Cheung, PCF ;
Salt, IP ;
Davies, SP ;
Hardie, DG ;
Carling, D .
BIOCHEMICAL JOURNAL, 2000, 346 :659-669
[6]   Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice [J].
Cokorinos, Emily C. ;
Delmore, Jake ;
Reyes, Allan R. ;
Albuquerque, Bina ;
Kjobsted, Rasmus ;
Jorgensen, Nicolas O. ;
Tran, Jean-Luc ;
Jatkar, Aditi ;
Cialdea, Katherine ;
Esquejo, Ryan M. ;
Meissen, John ;
Calabrese, Matthew F. ;
Cordes, Jason ;
Moccia, Robert ;
Tess, David ;
Salatto, Christopher T. ;
Coskran, Timothy M. ;
Opsahl, Alan C. ;
Flynn, Declan ;
Blatnik, Matthew ;
Li, Wenlin ;
Kindt, Erick ;
Foretz, Marc ;
Viollet, Benoit ;
Ward, Jessica ;
Kurumbail, Ravi G. ;
Kalgutkar, Amit S. ;
Wojtaszewski, Jorgen F. P. ;
Cameron, Kimberly O. ;
Miller, Russell A. .
CELL METABOLISM, 2017, 25 (05) :1147-+
[7]   Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome [J].
Corradetti, MN ;
Inoki, K ;
Bardeesy, N ;
DePinho, RA ;
Guan, KL .
GENES & DEVELOPMENT, 2004, 18 (13) :1533-1538
[8]   Visualization of Compartmentalized Kinase Activity Dynamics Using Adaptable BimKARs [J].
Depry, Charlene ;
Mehta, Sohum ;
Li, Ruojing ;
Zhang, Jin .
CHEMISTRY & BIOLOGY, 2015, 22 (11) :1470-1479
[9]   AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965 [J].
Dite, Toby A. ;
Langendorf, Christopher G. ;
Hoque, Ashfaqul ;
Galic, Sandra ;
Rebello, Richard J. ;
Ovens, Ashley J. ;
Lindqvist, Lisa M. ;
Ngoei, Kevin R. W. ;
Ling, Naomi X. Y. ;
Furic, Luc ;
Kemp, Bruce E. ;
Scott, John W. ;
Oakhill, Jonathan S. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (23) :8874-8885
[10]   STRADα regulates LKB1 localization by blocking access to importin-α, and by association with Crm1 and exportin-7 [J].
Dorfman, Julia ;
Macara, Ian G. .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (04) :1614-1626