Topologically biased random walk and community finding in networks

被引:38
|
作者
Zlatic, Vinko [1 ,2 ]
Gabrielli, Andrea [1 ,3 ]
Caldarelli, Guido [1 ,4 ,5 ]
机构
[1] Univ Roma La Sapienza, Ist Sistemi Complessi CNR, UOS Sapienza, I-00185 Rome, Italy
[2] Rudjer Boskovic Inst, Div Theoret Phys, HR-10002 Zagreb, Croatia
[3] Ist Sistemi Complessi CNR, I-00185 Rome, Italy
[4] LINKALAB, I-09129 Cagliari, Italy
[5] London Inst Math Sci, London W1K 2NY, England
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 06期
关键词
EIGENVECTORS; EIGENVALUES;
D O I
10.1103/PhysRevE.82.066109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an approach of topology biased random walks for undirected networks. We focus on a one-parameter family of biases, and by using a formal analogy with perturbation theory in quantum mechanics we investigate the features of biased random walks. This analogy is extended through the use of parametric equations of motion to study the features of random walks vs parameter values. Furthermore, we show an analysis of the spectral gap maximum associated with the value of the second eigenvalue of the transition matrix related to the relaxation rate to the stationary state. Applications of these studies allow ad hoc algorithms for the exploration of complex networks and their communities.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Topologically biased random walk for diffusions on multiplex networks
    Ding, Cangfeng
    Li, Kan
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 28 : 343 - 356
  • [2] BIASED RANDOM-WALK ON NETWORKS
    GOLDHIRSCH, I
    GEFEN, Y
    PHYSICAL REVIEW A, 1987, 35 (03): : 1317 - 1327
  • [3] Random walk on topologically biased anisotropic percolation clusters and transport properties
    S. Sinha
    S. B. Santra
    The European Physical Journal B, 2009, 67 : 429 - 435
  • [4] Random walk on topologically biased anisotropic percolation clusters and transport properties
    Sinha, S.
    Santra, S. B.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 67 (03): : 429 - 435
  • [5] Network Embedding Based on Biased Random Walk for Community Detection in Attributed Networks
    Guo, Kun
    Zhao, Zizheng
    Yu, Zhiyong
    Guo, Wenzhong
    Lin, Ronghua
    Tang, Yong
    Wu, Ling
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (05) : 2279 - 2290
  • [6] Biased Random Walk Sampling on Assortative Networks
    Yook, Soon-Hyung
    Yun, Yeo-kwang
    Kim, Yup
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 56 (03) : 990 - 993
  • [7] Biased Random Walk on the Trace of Biased Random Walk on the Trace of ...
    Croydon, David
    Holmes, Mark
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (02) : 1341 - 1372
  • [8] Biased Random Walk on the Trace of Biased Random Walk on the Trace of …
    David Croydon
    Mark Holmes
    Communications in Mathematical Physics, 2020, 375 : 1341 - 1372
  • [9] BIASED RANDOM-WALK ON A BIASED RANDOM-WALK
    KUTNER, R
    PHYSICA A, 1991, 171 (01): : 43 - 46
  • [10] Centrality ranking in multiplex networks using topologically biased random walks
    Ding, Cangfeng
    Li, Kan
    NEUROCOMPUTING, 2018, 312 : 263 - 275