Molecular simulations of confined liquids: An alternative to the grand canonical Monte Carlo simulations

被引:42
|
作者
Ghoufi, Aziz [1 ]
Morineau, Denis [1 ]
Lefort, Ronan [1 ]
Hureau, Ivanne [1 ]
Hennous, Leila [1 ]
Zhu, Haochen [2 ,3 ]
Szymczyk, Anthony [2 ,3 ]
Malfreyt, Patrice [4 ]
Maurin, Guillaume [5 ]
机构
[1] Univ Rennes 1, Inst Phys Rennes, CNRS, UMR 6251, F-35042 Rennes, France
[2] Univ Rennes 1, CNRS, UMR 6226, F-35042 Rennes, France
[3] Univ Europeenne Bretagne, F-35000 Rennes, France
[4] CNRS, LTIM, Lab Thermodynam & Interact Mol, UMR 6272, F-63000 Clermont Ferrand, France
[5] Univ Montpellier 2, Inst Charles Gerhardt Montpellier, CNRS, ENSCM,UMR 5253,UM2, F-34095 Montpellier 05, France
关键词
FREE-ENERGY PERTURBATION; DYNAMICS SIMULATIONS; PRESSURE TENSOR; SURFACE; ADSORPTION; MIXTURES; WATER; TRANSITIONS; INTEGRATION; SEPARATION;
D O I
10.1063/1.3554641
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Commonly, the confinement effects are studied from the grand canonical Monte Carlo (GCMC) simulations from the computation of the density of liquid in the confined phase. The GCMC-modeling and chemical potential (mu) calculations are based on the insertion/deletion of the real and ghost particle, respectively. At high density, i.e., at high pressure or low temperature, the insertions fail from the Widom insertions while the performing methods as expanded method or perturbation approach are not efficient to treat the large and complex molecules. To overcome this problem we use a simple and efficient method to compute the liquid's density in the confined medium. This method does not require the precalculation of mu and is an alternative to the GCMC simulations. From the isothermal-isosurface-isobaric statistical ensemble we consider the explicit framework/liquid external interface to model an explicit liquid's reservoir. In this procedure only the liquid molecules undergo the volume changes while the volume of the framework is kept constant. Therefore, this method is described in the Np(n)AV(f)T statistical ensemble, where N is the number of particles, p(n) is the normal pressure, V-f is the volume of framework, A is the surface of the solid/fluid interface, and T is the temperature. This approach is applied and validated from the computation of the density of the methanol and water confined in the mesoporous cylindrical silica nanopores and the MIL-53(Cr) metal organic framework type, respectively. (C) 2011 American Institute of Physics. [doi:10.1063/1.3554641]
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ammonia Clathrate Hydrate As Seen from Grand Canonical Monte Carlo Simulations
    Fabian, Balazs
    Picaud, Sylvain
    Jedlovszky, Pal
    Guilbert-Lepoutre, Aurelie
    Mousis, Olivier
    ACS EARTH AND SPACE CHEMISTRY, 2018, 2 (05): : 521 - 531
  • [2] Reactive Grand-Canonical Monte Carlo Simulations for Modeling Hydration of MgCl2
    Heijmans, Koen
    Tranca, Ionut C.
    Chang, Ming-Wen
    Vlugt, Thijs J. H.
    Gaastra-Nedea, Silvia, V
    Smeulders, David M. J.
    ACS OMEGA, 2021, 6 (48): : 32475 - 32484
  • [3] Grand canonical Monte Carlo simulations of hydrogen adsorption in carbon cones
    Gotzias, A.
    Heiberg-Andersen, H.
    Kainourgiakis, M.
    Steriotis, Th.
    APPLIED SURFACE SCIENCE, 2010, 256 (17) : 5226 - 5231
  • [4] Grand canonical Monte Carlo simulations of methane adsorption in fullerene pillared graphene nanocomposites
    Baykasoglu, Cengiz
    Mert, Humeyra
    Deniz, Celal Utku
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2021, 106
  • [5] Grand Canonical Monte Carlo simulations for energy gases and silicalite-1
    Zhao, Liang
    Zhai, Dong
    Liu, Bei
    Liu, Zhichang
    Xu, Chumming
    Wei, Wei
    Chen, Yu
    Gao, Jinsen
    CHEMICAL ENGINEERING SCIENCE, 2012, 68 (01) : 101 - 107
  • [6] Grand canonical Monte Carlo and molecular dynamics simulations of capillary condensation and evaporation of water in hydrophilic mesopores
    Yamashita, Kyohei
    Kashiwagi, Kentaro
    Agrawal, Ankit
    Daiguji, Hirofumi
    MOLECULAR PHYSICS, 2017, 115 (03) : 328 - 342
  • [7] Evaluation of carbon nanopores using large molecular probes in grand canonical Monte Carlo simulations and experiments
    Ohba, Tomonori
    Yamamoto, Shotaro
    Takase, Atsushi
    Yudasaka, Masako
    Iijima, Sumio
    CARBON, 2015, 88 : 133 - 138
  • [8] Grand Canonical Monte Carlo simulations of olefins adsorption in zeolite ZSM-5
    Ding, Xue
    Liu, Fuyu
    Yang, Chaohe
    ADVANCES IN CHEMICAL ENGINEERING II, PTS 1-4, 2012, 550-553 : 321 - +
  • [9] Hydrogen Storage Capacity of Carbon-Foams: Grand Canonical Monte Carlo Simulations
    Singh, Abhishek K.
    Lu, Jianxin
    Aga, Rachel S.
    Yakobson, Boris I.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (05) : 2476 - 2482
  • [10] Insights into hydrogen and methane storage capacities: Grand canonical Monte Carlo simulations of SIGSUA
    Granja-DelRio, A.
    Cabria, I.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (15)