Polarizable Force Fields Based on Physical Models and Quantum Chemical Calculations

被引:13
|
作者
Wang, Xingyong [1 ]
Yan, Tianying [2 ]
Ma, Jing [1 ]
机构
[1] Nanjing Univ, Inst Theoret & Computat Chem, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210093, Jiangsu, Peoples R China
[2] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Inst New Energy Mat Chem, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
polarizable force field; quantum mechanics; molecular dynamics simulation; MOLECULAR-DYNAMICS; FRAGMENTATION APPROACH; FLUCTUATING CHARGE; WATER; DIPOLE; MACROMOLECULES; SIMULATIONS;
D O I
10.1002/qua.24829
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This perspective gives a brief overview of recent developments of the polarizable force fields (FFs)a kind of specific FF method that includes polarization effect into conventional molecular mechanics. The commonly adopted polarizable models, that is, the fluctuating charge model, Drude model, and the inducible dipole model are expatiated. Taking advantage of the recent development of computational techniques and fragment-based low-scaling quantum mechanics (QM) methods, QM-based polarizable FFs appeared and particularly aroused great interest in biological systems. Current applications and limitations of several models are discussed. Opportunities and challenges for future development are also addressed. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:545 / 549
页数:5
相关论文
共 50 条
  • [31] MOLECULAR FORCE CONSTANTS FROM QUANTUM-CHEMICAL CALCULATIONS
    SARATHY, KP
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 1975, 12 (02): : 172 - 174
  • [32] Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields
    Moucka, Filip
    Nezbeda, Ivo
    Smith, William R.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (04) : 1756 - 1764
  • [33] Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations
    Hemmingsen, L
    Madsen, DE
    Esbensen, AL
    Olsen, L
    Engelsen, SB
    CARBOHYDRATE RESEARCH, 2004, 339 (05) : 937 - 948
  • [34] Quantum Mechanical Molecular Mechanical Calculations using AMOEBA Force Fields
    Shao, Yihan
    Simmonett, Andrew
    Pickard, Frank
    Koenig, Gerhard
    Brooks, Bernard
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 158A - 158A
  • [35] Quantum Gravitational Force Between Polarizable Objects
    Ford, L. H.
    Hertzberg, Mark P.
    Karouby, J.
    PHYSICAL REVIEW LETTERS, 2016, 116 (15)
  • [36] Polarizable force fields: History, test cases, and prospects
    Warshel, Arieh
    Kato, Mitsunori
    Pisliakov, Andrei V.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2007, 3 (06) : 2034 - 2045
  • [37] Polarizable force fields for molecular dynamics simulations of biomolecules
    Baker, Christopher M.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2015, 5 (02) : 241 - 254
  • [38] A fast path integral method for polarizable force fields
    Fanourgakis, George S.
    Markland, Thomas E.
    Manolopoulos, David E.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (09):
  • [39] Potential energy functions: From consistent force fields to spectroscopically determined polarizable force fields
    Palmo, K
    Mannfors, B
    Mirkin, NG
    Krimm, S
    BIOPOLYMERS, 2003, 68 (03) : 383 - 394
  • [40] A novel Monte Carlo algorithm for polarizable force fields
    Chen, B
    Martin, MG
    Siepmann, JI
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U705 - U705