Delay-dependent conditions for finite time stability of linear time-varying systems with delay

被引:13
作者
Chen, Menghua [1 ]
Sun, Jian [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
delay-dependent conditions; discretization; finite time stability; time-varying system; H-INFINITY CONTROL; STABILIZATION; CONSTANT;
D O I
10.1002/asjc.2059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the problem of finite time stability of linear time-varying system with delay. By constructing an augmented time-varying Lyapunov functional and using the Wirtinger-type inequality deductively, delay-dependent finite time stability conditions are derived and presented in terms of differential linear matrix inequalities (DLMIs). Then, the DLMIs are transformed into a series of recursive linear matrix inequalities (RLMIs) by discretizing the time interval into equally spaced time distances, and an algorithm is given to solve the RLMIs. Examples illustrate the feasibility and effectiveness of the proposed method.
引用
收藏
页码:924 / 933
页数:10
相关论文
共 39 条
[1]   Finite-time stabilization via dynamic output feedback [J].
Amato, F ;
Ariola, M ;
Cosentino, C .
AUTOMATICA, 2006, 42 (02) :337-342
[2]   Finite-time control of linear time-varying systems via output feedback [J].
Amato, F ;
Ariola, M ;
Cosentino, C .
ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, :4722-4726
[3]   Finite-time control of discrete-time linear systems [J].
Amato, F ;
Ariola, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :724-729
[4]   Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems [J].
Amato, F. ;
De Tommasi, G. ;
Pironti, A. .
AUTOMATICA, 2013, 49 (08) :2546-2550
[5]   Input-output finite time stabilization of linear systems [J].
Amato, F. ;
Ambrosino, R. ;
Cosentino, C. ;
De Tommasi, G. .
AUTOMATICA, 2010, 46 (09) :1558-1562
[6]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[7]   Finite-Time Stability of Linear Time-Varying Systems: Analysis and Controller Design [J].
Amato, Francesco ;
Ariola, Marco ;
Cosentino, Carlo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (04) :1003-1008
[8]   Stabilizability of linear time-varying systems [J].
Anderson, Brian D. O. ;
Ilchmann, Achim ;
Wirth, Fabian R. .
SYSTEMS & CONTROL LETTERS, 2013, 62 (09) :747-755
[9]   NEW BOUNDED REAL LEMMA FORMULATION AND H∞ CONTROL FOR CONTINUOUS-TIME DESCRIPTOR SYSTEMS [J].
Chadli, M. ;
Shi, P. ;
Feng, Z. ;
Lam, J. .
ASIAN JOURNAL OF CONTROL, 2017, 19 (06) :2192-2198
[10]   FINITE TIME STABILITY ANALYSIS OF SWITCHED SYSTEMS WITH STABLE AND UNSTABLE SUBSYSTEMS [J].
Chen, Guopei ;
Yang, Ying ;
Pan, Qingnian .
ASIAN JOURNAL OF CONTROL, 2014, 16 (04) :1224-1228