MARGIN-BASED SAMPLE FILTERING FOR IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS

被引:0
|
作者
Kaplanoglou, Pantelis I. [1 ]
Diamantaras, Konstantinos [2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
[2] Alexander TEI Thessaloniki, Dept Informat Technol, Sindos 57400, Greece
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2018年
关键词
Sample filtering; Machine Learning; Image classification; Convolutional Neural Networks; Multiclass Margin;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep convolutional neural networks have become the state of the art methods for image classification after demonstrating very good performance on very large datasets with general visual content. Amongst the problems for training deep CNN architectures is the heavy computational cost and the large memory requirements. In this work we exploit the fact that many training samples are correctly classified in the early stages of learning and therefore they can be skipped in further training epochs without noticeable performance degradation. We employ sample filtering to determine which samples are used in each epoch. We introduce the "multiclass margin" index to measure how safely a sample is classified to the correct class. The multi-class margin is closely connected with the output of the final Softmax layer. Using filtering we gradually reduce the number of usable samples to 40% of the original dataset. At the same time we gain around 18% in time compared to using all the samples in every epoch, while the performance degradation is around 1%.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Image Classification Using Convolutional Neural Networks
    Filippov, S. A.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2024, 58 (SUPPL3) : S143 - S149
  • [2] Fruit Image Classification Using Convolutional Neural Networks
    Ashraf, Shawon
    Kadery, Ivan
    Chowdhury, Md Abdul Ahad
    Mahbub, Tahsin Zahin
    Rahman, Rashedur M.
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2019, 7 (04) : 51 - 70
  • [3] Convolutional Neural Networks based Pornographic Image Classification
    Zhou, KaiLong
    Zhou, Li
    Geng, Zhen
    Zhang, Jing
    Li, Xiao Guang
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 206 - 209
  • [4] Image spam filtering using convolutional neural networks
    Fan Aiwan
    Yang Zhaofeng
    PERSONAL AND UBIQUITOUS COMPUTING, 2018, 22 (5-6) : 1029 - 1037
  • [5] Image spam filtering using convolutional neural networks
    Fan Aiwan
    Yang Zhaofeng
    Personal and Ubiquitous Computing, 2018, 22 : 1029 - 1037
  • [6] Review of Image Classification Algorithms Based on Convolutional Neural Networks
    Chen, Leiyu
    Li, Shaobo
    Bai, Qiang
    Yang, Jing
    Jiang, Sanlong
    Miao, Yanming
    REMOTE SENSING, 2021, 13 (22)
  • [7] PolSAR Image Classification Based on Deep Convolutional Neural Networks Using Wavelet Transformation
    Jamali, Ali
    Mahdianpari, Masoud
    Mohammadimanesh, Fariba
    Bhattacharya, Avik
    Homayouni, Saeid
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Markov Random Field Based Convolutional Neural Networks for Image Classification
    Peng, Yao
    Yin, Hujun
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2017, 2017, 10585 : 387 - 396
  • [9] Image-Based Macroscopic Classification of Aspergillus Fungi Species Using Convolutional Neural Networks
    Billones, Robert Kerwin C.
    Calilung, Edwin J.
    Dadios, Elmer P.
    Santiago, Nelson
    2020 IEEE 12TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2020,
  • [10] Recycling Material Classification using Convolutional Neural Networks
    Liu, Kaihua
    Liu, Xudong
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 83 - 88