Comparative models for multi-step ahead wind speed forecasting applied for expected wind turbine power output prediction

被引:1
|
作者
Kenmoe, Germaine Djuidje [1 ]
Fotso, Hervice Romeo Fogno [1 ]
Kaze, Claude Vidal Aloyem [2 ]
机构
[1] Univ Yaounde I, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[2] Univ Buea, Higher Tech Teachers Training Coll Kumba, Dept Renewable Energy, Buea, Cameroon
关键词
Artificial intelligence; ARIMA; forecasting methods; multi-step forecasting; wind speed; wind turbine power generation; Cameroon; NEURAL-NETWORK; WAVELET TRANSFORM; GENERATION; ALGORITHM; STRATEGY;
D O I
10.1177/0309524X211052015
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper investigates six of the most widely used wind speed forecasting models for a combination of statistical and physical methods for the purpose of Wind Turbine Power Generation (WTPG) prediction in Cameroon. Statistical method based on both single static and dynamic neural networks architectures and two hybrid neural networks architectures in comparison to ARIMA model are employed for multi-step ahead wind speed forecasting in two Datasets in Bapouh, Cameroon. The physical method is used to estimate I day ahead expected WTPG for each Dataset using the previous predicted wind speed from better forecasting models. The obtained results of multi-step ahead forecasting showed that the ARIMA and nonlinear autoregression with exogenous input neural network (NARXNN) models perform well the wind speed forecasting than other forecasting models in both Datasets. The better performances of ARIMA are achieved with one-step ahead and two-step ahead forecasting, while NARXNN is better with one-step ahead forecasting. But NARXNN models have more computational time than other models such as ARIMA models. Furthermore, the effectiveness of employed hybrid method for WTPG prediction is proven.
引用
收藏
页码:780 / 795
页数:16
相关论文
共 50 条
  • [1] An Integrated Wind Power Forecasting Methodology: Interval Estimation Of Wind Speed, Operation Probability Of Wind Turbine, And Conditional Expected Wind Power Output Of A Wind Farm
    Liu, Heping
    Shi, Jing
    Erdem, Ergin
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2013, 10 (02) : 151 - 176
  • [2] Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models
    Wang, Jianzhou
    Song, Yiliao
    Liu, Feng
    Hou, Ru
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 : 960 - 981
  • [3] An innovative hybrid approach for multi-step ahead wind speed prediction
    Wang, Jujie
    Li, Yaning
    APPLIED SOFT COMPUTING, 2019, 78 : 296 - 309
  • [4] Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks
    Fu, Yiwei
    Hu, Wei
    Tang, Maolin
    Yu, Rui
    Liu, Baisi
    2018 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2018,
  • [5] Wind speed and power output prediction of DFIG wind turbine
    Sadjadi, M. E.
    Karrari, M.
    ELECTRICAL AND CONTROL TECHNOLOGIES, PROCEEDINGS, 2006, : 26 - 30
  • [6] Multi-step ahead wind power forecasting for Ireland using an ensemble of VMD-ELM models
    Gonzalez-Sopena, Juan Manuel
    Pakrashi, Vikram
    Ghosh, Bidisha
    2020 31ST IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2020, : 187 - 191
  • [7] Correlation aware multi-step ahead wind speed forecasting with heteroscedastic multi-kernel learning
    Wang, Yun
    Xie, Zongxia
    Hu, Qinghua
    Xiong, Shenghua
    ENERGY CONVERSION AND MANAGEMENT, 2018, 163 : 384 - 406
  • [8] Multi-step wind speed and wind power forecasting using variational momentum factor and deep learning based intelligent neural network models
    Nachimuthu, Deepa Subramaniam
    Banerjee, Abhik
    Karuppaiah, Jayakumar
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (06)
  • [9] MULTI-STEP WIND SPEED FORECASTING BASED ON VIT AND LSTM
    Xiang, Ling
    Chen, Jinpeng
    Fu, Xiaomengting
    Yao, Qingtao
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (09): : 525 - 533
  • [10] Study on the Multi-step Forecasting for Wind Speed Based on EMD
    Liu Xingjie
    Mi Zengqiang
    Li Peng
    Mei Huawei
    2009 INTERNATIONAL CONFERENCE ON SUSTAINABLE POWER GENERATION AND SUPPLY, VOLS 1-4, 2009, : 1345 - +