Novel Method of Regolith Sample Return from Extraterrestrial Body using a Puff of Gas

被引:0
作者
Zacny, K. [1 ]
Mckay, D. [2 ]
Beegle, L. [3 ]
Onstott, T. [4 ]
Mueller, R. [5 ]
Mungas, G. [6 ]
Chu, P. [1 ]
Craft, J. [1 ]
机构
[1] Honeybee Robot Spacecraft Mech Corp, 460 West 34th St, New York, NY 10001 USA
[2] NASA, Johnson Space Ctr, Houston, TX USA
[3] NASA, Jet Prop Lab, La Canada Flintridge, CA USA
[4] Princeton Univ, Princeton, NJ 08544 USA
[5] NASA, Kennedy Space Ctr, FL USA
[6] Firestar Engn, Mojave, CA USA
来源
2010 IEEE AEROSPACE CONFERENCE PROCEEDINGS | 2010年
关键词
METEORITE; MARS;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Future sample return missions to the Moon, asteroids, and in particular, Mars seek reliable and inexpensive methods of returning uncontaminated samples back to Earth. Sample return from the Moon has already been demonstrated in the 1960s and 1970s by US Apollo and Soviet Luna missions; study of these samples in earth laboratories resulted in a quantum leap in planetary science. As opposed to sample return from the Moon, sample return from Mars presents much greater challenges mainly because of the presence of the atmosphere, and sheer distance from the Earth. To reduce a mission complexity and cost, we propose a novel, low risk and actuator-free sample return of Martian regolith, dust and atmosphere. In the proposed scheme, a sample of regolith is acquired directly into a return vehicle using a pneumatic system(1) (2). We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander (for redundancy). Upon landing, the legs will bury themselves into the surface and the tubes will fill up with regolith (and ice, if present). With one puff of gas injected at the base of the tubes, the sample will be lofted into a sampling chamber onboard the return vehicle. An additional chamber can acquire atmospheric gas and dust. The sample return will require only 1) a mechanism to open/close a sampling chamber and 2) a valve to open a gas cylinder.
引用
收藏
页数:10
相关论文
共 24 条
  • [1] [Anonymous], 2006, The Surface of Mars
  • [2] [Anonymous], 1991, LUNAR SOURCEBOOK USE
  • [3] Bar-Cohen Y., 2009, Drilling in Extreme Environments: penetration and sampling on earth and other planets
  • [4] BEATTY DW, 2005, ANAL PRECURSOR MEASU
  • [5] MARTIAN GASES IN AN ANTARCTIC METEORITE
    BOGARD, DD
    JOHNSON, P
    [J]. SCIENCE, 1983, 221 (4611) : 651 - 654
  • [6] Borg, 2008, SCI PRIORITIES MARS, V8, DOI [10.1089/ast.2008.0759, DOI 10.1089/AST.2008.0759]
  • [7] Comet 81P/Wild 2 under a microscope
    Brownlee, Don
    Tsou, Peter
    Aleon, Jerome
    Alexander, Conel M. O'D.
    Araki, Tohru
    Bajt, Sasa
    Baratta, Giuseppe A.
    Bastien, Ron
    Bland, Phil
    Bleuet, Pierre
    Borg, Janet
    Bradley, John P.
    Brearley, Adrian
    Brenker, F.
    Brennan, Sean
    Bridges, John C.
    Browning, Nigel D.
    Brucato, John R.
    Bullock, E.
    Burchell, Mark J.
    Busemann, Henner
    Butterworth, Anna
    Chaussidon, Marc
    Cheuvront, Allan
    Chi, Miaofang
    Cintala, Mark J.
    Clark, B. C.
    Clemett, Simon J.
    Cody, George
    Colangeli, Luigi
    Cooper, George
    Cordier, Patrick
    Daghlian, C.
    Dai, Zurong
    D'Hendecourt, Louis
    Djouadi, Zahia
    Dominguez, Gerardo
    Duxbury, Tom
    Dworkin, Jason P.
    Ebel, Denton S.
    Economou, Thanasis E.
    Fakra, Sirine
    Fairey, Sam A. J.
    Fallon, Stewart
    Ferrini, Gianluca
    Ferroir, T.
    Fleckenstein, Holger
    Floss, Christine
    Flynn, George
    Franchi, Ian A.
    [J]. SCIENCE, 2006, 314 (5806) : 1711 - 1716
  • [8] Buhler C. R., 2007, AER C 2007 IEEE BIG
  • [9] Gibson E. K., 1983, Journal of Geophysical Research, V88, P912, DOI 10.1029/JB088iS02p0A912
  • [10] CALCIUM-CARBONATE AND SULFATE OF POSSIBLE EXTRATERRESTRIAL ORIGIN IN THE EETA-79001 METEORITE
    GOODING, JL
    WENTWORTH, SJ
    ZOLENSKY, ME
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 1988, 52 (04) : 909 - 915