Extracting cosmological parameters from N-body simulations using machine learning techniques

被引:15
作者
Lazanu, Andrei [1 ]
机构
[1] Univ Paris, Sorbonne Univ, Univ PSL, Ecole Normale Super,ENS,Lab Phys,CNRS, F-75005 Paris, France
关键词
cosmological parameters from LSS; power spectrum; INITIAL CONDITIONS; TRANSIENTS;
D O I
10.1088/1475-7516/2021/09/039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We make use of snapshots taken from the Quijote suite of simulations, consisting of 2000 simulations where five cosmological parameters have been varied (Omega(m), Omega(b), h, n(s) and sigma(8)) in order to investigate the possibility of determining them using machine learning techniques. In particular, we show that convolutional neural networks can be employed to accurately extract Omega(m) and sigma(8) from the N-body simulations, and that these parameters can also be found from the non-linear matter power spectrum obtained from the same suite of simulations using both random forest regressors and deep neural networks. We show that the power spectrum provides competitive results in terms of accuracy compared to using the simulations and that we can also estimate the scalar spectral index ns from the power spectrum, at a lower precision.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Fast likelihood-free cosmology with neural density estimators and active learning [J].
Alsing, Justin ;
Charnock, Tom ;
Feeney, Stephen ;
Wandelt, Benjamin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (03) :4440-4458
[2]   Planck 2018 results: I. Overview and the cosmological legacy of Planck [J].
Aghanim, N. ;
Akrami, Y. ;
Arroja, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Desert, F. -X. ;
Di Valentino, E. ;
Dickinson, C. ;
Diego, J. M. ;
Donzelli, S. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Efstathiou, G. ;
Elsner, F. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[3]   The Microwave Anisotropy Probe mission [J].
Bennett, CL ;
Bay, M ;
Halpern, M ;
Hinshaw, G ;
Jackson, C ;
Jarosik, N ;
Kogut, A ;
Limon, M ;
Meyer, SS ;
Page, L ;
Spergel, DN ;
Tucker, GS ;
Wilkinson, DT ;
Wollack, E ;
Wright, EL .
ASTROPHYSICAL JOURNAL, 2003, 583 (01) :1-23
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]  
Brieden S., ARXIV210607641
[6]   DeepCMB: Lensing reconstruction of the cosmic microwave background with deep neural networks [J].
Caldeira, J. ;
Wu, W. L. K. ;
Nord, B. ;
Avestruz, C. ;
Trivedi, S. ;
Story, K. T. .
ASTRONOMY AND COMPUTING, 2019, 28
[7]  
Chanda P., ARXIV210204327
[8]   ANNz:: Estimating photometric redshifts using artificial neural networks [J].
Collister, AA ;
Lahav, O .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2004, 116 (818) :345-351
[9]   Transients from initial conditions in cosmological simulations [J].
Crocce, Martin ;
Pueblas, Sebastian ;
Scoccimarro, Roman .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 373 (01) :369-381
[10]   The PAU Survey: Photometric redshifts using transfer learning from simulations [J].
Eriksen, M. ;
Alarcon, A. ;
Cabayol, L. ;
Carretero, J. ;
Casas, R. ;
Castander, F. J. ;
De Vicente, J. ;
Fernandez, E. ;
Garcia-Bellido, J. ;
Gaztanaga, E. ;
Hildebrandt, H. ;
Hoekstra, H. ;
Joachimi, B. ;
Miquel, R. ;
Padilla, C. ;
Sanchez, E. ;
Sevilla-Noarbe, I ;
Tallada, P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (04) :4565-4579