A new approach to regression analysis of censored competing-risks data

被引:0
|
作者
Jin, Yuxue [1 ]
Lai, Tze Leung [2 ]
机构
[1] Google, Quantitat Mkt, New York, NY 10011 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Asymptotic efficiency; Cumulative incidence function; Empirical process theory; Hazard function of subdistribution; Martingale central limit theorem; Semiparametric likelihood; Volterra equation; MAXIMUM-LIKELIHOOD-ESTIMATION; SHARED FRAILTY MODEL; CUMULATIVE INCIDENCE; SURVIVAL ANALYSIS;
D O I
10.1007/s10985-016-9378-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approximate likelihood approach is developed for regression analysis of censored competing-risks data. This approach models directly the cumulative incidence function, instead of the cause-specific hazard function, in terms of explanatory covariates under a proportional subdistribution hazards assumption. It uses a self-consistent iterative procedure to maximize an approximate semiparametric likelihood function, leading to an asymptotically normal and efficient estimator of the vector of regression parameters. Simulation studies demonstrate its advantages over previous methods.
引用
收藏
页码:605 / 625
页数:21
相关论文
共 50 条
  • [41] The influence of competing-risks setting on the choice of hypothesis test for treatment effect
    Williamson, P. R.
    Kolamunnage-Dona, R.
    Smith, C. Tudur
    BIOSTATISTICS, 2007, 8 (04) : 689 - 694
  • [42] Semiparametric marginal regression analysis for dependent competing risks under an assumed copula
    Chen, Yi-Hau
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 235 - 251
  • [43] Duration and competing-risks determinants of terrorist hostage-taking incidents
    Kim, Wukki
    Sandler, Todd
    EUROPEAN JOURNAL OF POLITICAL ECONOMY, 2021, 70
  • [45] Regression analysis of competing risks data via semi-parametric additive hazard model
    Xu Zhang
    Haci Akcin
    Hyun J. Lim
    Statistical Methods & Applications, 2011, 20 : 357 - 381
  • [46] Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data
    Shen, Pao-sheng
    LIFETIME DATA ANALYSIS, 2025, 31 (01) : 76 - 101
  • [47] A note on competing risks in survival data analysis
    J M Satagopan
    L Ben-Porat
    M Berwick
    M Robson
    D Kutler
    A D Auerbach
    British Journal of Cancer, 2004, 91 : 1229 - 1235
  • [48] On the analysis of discrete time competing risks data
    Lee, Minjung
    Feuer, Eric J.
    Fine, Jason P.
    BIOMETRICS, 2018, 74 (04) : 1468 - 1481
  • [49] A note on competing risks in survival data analysis
    Satagopan, JM
    Ben-Porat, L
    Berwick, M
    Robson, M
    Kutler, D
    Auerbach, AD
    BRITISH JOURNAL OF CANCER, 2004, 91 (07) : 1229 - 1235
  • [50] Simulating competing risks data in survival analysis
    Beyersmann, Jan
    Latouche, Aurelien
    Buchholz, Anika
    Schumacher, Martin
    STATISTICS IN MEDICINE, 2009, 28 (06) : 956 - 971