共 50 条
A new approach to regression analysis of censored competing-risks data
被引:0
|作者:
Jin, Yuxue
[1
]
Lai, Tze Leung
[2
]
机构:
[1] Google, Quantitat Mkt, New York, NY 10011 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金:
美国国家科学基金会;
关键词:
Asymptotic efficiency;
Cumulative incidence function;
Empirical process theory;
Hazard function of subdistribution;
Martingale central limit theorem;
Semiparametric likelihood;
Volterra equation;
MAXIMUM-LIKELIHOOD-ESTIMATION;
SHARED FRAILTY MODEL;
CUMULATIVE INCIDENCE;
SURVIVAL ANALYSIS;
D O I:
10.1007/s10985-016-9378-8
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
An approximate likelihood approach is developed for regression analysis of censored competing-risks data. This approach models directly the cumulative incidence function, instead of the cause-specific hazard function, in terms of explanatory covariates under a proportional subdistribution hazards assumption. It uses a self-consistent iterative procedure to maximize an approximate semiparametric likelihood function, leading to an asymptotically normal and efficient estimator of the vector of regression parameters. Simulation studies demonstrate its advantages over previous methods.
引用
收藏
页码:605 / 625
页数:21
相关论文