A new approach to regression analysis of censored competing-risks data

被引:0
|
作者
Jin, Yuxue [1 ]
Lai, Tze Leung [2 ]
机构
[1] Google, Quantitat Mkt, New York, NY 10011 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Asymptotic efficiency; Cumulative incidence function; Empirical process theory; Hazard function of subdistribution; Martingale central limit theorem; Semiparametric likelihood; Volterra equation; MAXIMUM-LIKELIHOOD-ESTIMATION; SHARED FRAILTY MODEL; CUMULATIVE INCIDENCE; SURVIVAL ANALYSIS;
D O I
10.1007/s10985-016-9378-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approximate likelihood approach is developed for regression analysis of censored competing-risks data. This approach models directly the cumulative incidence function, instead of the cause-specific hazard function, in terms of explanatory covariates under a proportional subdistribution hazards assumption. It uses a self-consistent iterative procedure to maximize an approximate semiparametric likelihood function, leading to an asymptotically normal and efficient estimator of the vector of regression parameters. Simulation studies demonstrate its advantages over previous methods.
引用
收藏
页码:605 / 625
页数:21
相关论文
共 50 条
  • [21] A proportional hazards regression model for the subdistribution with right-censored and left-truncated competing risks data
    Zhang, Xu
    Zhang, Mei-Jie
    Fine, Jason
    STATISTICS IN MEDICINE, 2011, 30 (16) : 1933 - 1951
  • [22] Competing risks analysis for discrete time-to-event data
    Schmid, Matthias
    Berger, Moritz
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (05)
  • [23] Regression analysis of competing risks data via semi-parametric additive hazard model
    Zhang, Xu
    Akcin, Haci
    Lim, Hyun J.
    STATISTICAL METHODS AND APPLICATIONS, 2011, 20 (03) : 357 - 381
  • [24] Analysis of interval censored failure time data with competing risk
    Kim, Yang-Jin
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (15) : 2778 - 2790
  • [25] Inference of progressively censored competing risks data from Kumaraswamy distributions
    Wang, Liang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 343 : 719 - 736
  • [26] ANALYSIS OF DEPENDENTLY CENSORED DATA BASED ON QUANTILE REGRESSION
    Ji, Shuang
    Peng, Limin
    Li, Ruosha
    Lynn, Michael J.
    STATISTICA SINICA, 2014, 24 (03) : 1411 - 1432
  • [27] Quantile regression based on a weighted approach under semi-competing risks data
    Hsieh, Jin-Jian
    Hsiao, Ming-Fu
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (14) : 2793 - 2807
  • [28] Analysis of interval censored competing risk data with missing causes of failure using pseudo values approach
    Do, Gipeum
    Kim, Yang-Jin
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (04) : 631 - 639
  • [29] Nonparametric competing risks analysis using Bayesian Additive Regression Trees
    Sparapani, Rodney
    Logan, Brent R.
    McCulloch, Robert E.
    Laud, Purushottam W.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (01) : 57 - 77
  • [30] Introduction to the Analysis of Survival Data in the Presence of Competing Risks
    Austin, Peter C.
    Lee, Douglas S.
    Fine, Jason P.
    CIRCULATION, 2016, 133 (06) : 601 - 609