A new approach to regression analysis of censored competing-risks data

被引:0
|
作者
Jin, Yuxue [1 ]
Lai, Tze Leung [2 ]
机构
[1] Google, Quantitat Mkt, New York, NY 10011 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Asymptotic efficiency; Cumulative incidence function; Empirical process theory; Hazard function of subdistribution; Martingale central limit theorem; Semiparametric likelihood; Volterra equation; MAXIMUM-LIKELIHOOD-ESTIMATION; SHARED FRAILTY MODEL; CUMULATIVE INCIDENCE; SURVIVAL ANALYSIS;
D O I
10.1007/s10985-016-9378-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approximate likelihood approach is developed for regression analysis of censored competing-risks data. This approach models directly the cumulative incidence function, instead of the cause-specific hazard function, in terms of explanatory covariates under a proportional subdistribution hazards assumption. It uses a self-consistent iterative procedure to maximize an approximate semiparametric likelihood function, leading to an asymptotically normal and efficient estimator of the vector of regression parameters. Simulation studies demonstrate its advantages over previous methods.
引用
收藏
页码:605 / 625
页数:21
相关论文
共 50 条
  • [1] A new approach to regression analysis of censored competing-risks data
    Yuxue Jin
    Tze Leung Lai
    Lifetime Data Analysis, 2017, 23 : 605 - 625
  • [2] Semiparametric Regression Analysis of Interval-Censored Competing Risks Data
    Mao, Lu
    Lin, Dan-Yu
    Zeng, Donglin
    BIOMETRICS, 2017, 73 (03) : 857 - 865
  • [3] Semiparametric regression on cumulative incidence function with interval-censored competing risks data
    Bakoyannis, Giorgos
    Yu, Menggang
    Yiannoutsos, Constantin T.
    STATISTICS IN MEDICINE, 2017, 36 (23) : 3683 - 3707
  • [4] Discrete-time competing-risks regression with or without penalization
    Meir, Tomer
    Gorfine, Malka
    BIOMETRICS, 2025, 81 (02)
  • [5] Smoothed quantile regression analysis of competing risks
    Choi, Sangbum
    Kang, Sangwook
    Huang, Xuelin
    BIOMETRICAL JOURNAL, 2018, 60 (05) : 934 - 946
  • [6] Regression analysis of interval censored competing risk data using a pseudo-value approach
    Kim, Sooyeon
    Kim, Yang-Jin
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2016, 23 (06) : 555 - 562
  • [7] A proportional hazards model for the analysis of doubly censored competing risks data
    Sankaran, P. G.
    Sreedevi, E. P.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (10) : 2975 - 2987
  • [8] Competing Risks Regression for Stratified Data
    Zhou, Bingqing
    Latouche, Aurelien
    Rocha, Vanderson
    Fine, Jason
    BIOMETRICS, 2011, 67 (02) : 661 - 670
  • [9] Competing risks regression for clustered data
    Zhou, Bingqing
    Fine, Jason
    Latouche, Aurelien
    Labopin, Myriam
    BIOSTATISTICS, 2012, 13 (03) : 371 - 383
  • [10] Analysis of interval-censored competing risks data under missing causes
    Mitra, Debanjan
    Das, Ujjwal
    Das, Kalyan
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (03) : 439 - 459